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MagSound: Magnetic Field Assisted Wireless Earphone Tracking
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Wireless earphones are pervasive acoustic sensing platforms that can be used for many applications such as motion tracking
and handwriting input. However, wireless earphones suffer clock offset between the connected smart devices, which would
accumulate error rapidly over time. Moreover, compared with smartphone and voice assistants, the acoustic signal transmitted
by wireless earphone is much weaker due to the poor frequency response. In this paper, we propose MagSound, which uses the
built-in magnets to improve the tracking and acoustic sensing performance of Commercial-Off-The-Shelf (COTS) earphones.
Leveraging magnetic field strength, MagSound can predict the position of wireless earphones free from clock offset, which
can be used to re-calibrate the acoustic tracking. Further, the fusion of the two modalities mitigates the accumulated clock
offset and multipath effect. Besides, to increase the robustness to noise, MagSound employs finely designed Orthogonal
Frequency-Division Multiplexing (OFDM) ranging signals. We implement a prototype of MagSound on COTS and perform
experiments for tracking and handwriting input. Results demonstrate that MagSound maintains millimeter-level error in
2D tracking, and improves the handwriting recognition accuracy by 49.81%. We believe that MagSound can contribute to
practical applications of wireless earphones-based sensing.
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1 INTRODUCTION
Acoustic ranging has been a prosperous technique in human-computer interaction on mobile devices. Compared
with radio frequency signals, acoustic signals have a much smaller signal propagation speed and thus are
competent for fine-grained tracking tasks [46, 62, 65, 72]. Most of the existing works implement acoustic ranging
systems on smartphones due to their pervasive usage. Recently, many researchers observe that wireless earphones
have been widely used in daily life [12]. Connected via Bluetooth, the movement of an earphone can be tracked
by smart devices, such as smartphones, and hence this gadget can be a novel interaction tool. Considering its
compact size, holding a wireless earphone is more user-friendly than holding a smartphone for tracking task.
Besides, for smart devices without or with a small screen, e.g., smart speakers or smartwatches, earphones can
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(a) Fine-grained drawing (b) A novel input tool (c) A VR game gamepad

Fig. 1. Typical applications of wireless earphone tracking
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Fig. 2. One-shot calibration example
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Fig. 3. MagSound example

be an input tool that does not rely on the touch screen, which is more convenient than other interaction tools
such as stylus. Figure 1 shows three typical applications of wireless earphone tracking. In Figure 1(a), wireless
earphones can be used to do fine-grained drawing as an alternative to styluses. In Figure 1(b), wireless earphone
tracking empowers the earphone to be a novel input tool for a small screen without contact, which avoids the fat
finger problem [56]. In Figure 1(c), wireless earphones become gamepads for Virtual Reality (VR) games. We
believe that the wireless earphone has the potential to be a ubiquitous acoustic sensing platform.
Albeit promising, tracking the wireless earphones is non-trivial. We find that there are two main challenges

faced by wireless earphone tracking. The first challenge is that since the smart device and the wireless earphone
have their own clocks, the asynchronous clock would accumulate error rapidly for acoustic ranging, which is
formidable for fine-grained tracking. Previous works [62, 66] for acoustic ranging systems view the offset of each
signal frame as a constant, so they perform one-shot calibration linearly, i.e., holding the device for seconds before
tracking movement to count the clock offset and then cancel it using the average of the clock offset hereafter.
Unfortunately, for wireless earphones, we observe that the clock offset per frame varies over time, and hence the
one-shot calibration is not applicable to the considered scenario. According to our experiment, using the one-shot
calibration, the distance error caused by the clock offset can be up to 1.43 m in 240 seconds, given that the sound
speed is 343 m/s. The second challenge is that the signal transmitted by the earphone is much weaker than the
built-in speaker in the smartphone, and some earphones even fail to transmit acoustic signal at ultrasound band
[7]. While it brings less discomfort to users even in the audible band, a weaker acoustic signal is more susceptible
to noise and the tracking accuracy suffers as a result.
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To deal with the challenges, we propose MagSound, which can calibrate the clock offset multiple times
nonlinearly in one run. The key insight is that the built-in magnetometer in the smart device shares the clock
with built-in microphones, which means that the collected magnetic field strength data is not affected by the
asynchronous clock. Besides, we find that the earphones use embedded magnets to produce sound, so we can
exploit the strength of the magnetic field generated by the magnets to predict the position of the earphone free
from clock offset, which enables us to estimate the offset caused by acoustic ranging and then cancel it. The
advantage of this method is that the predicted position is neither affected by clock offset nor multipath, and
the disadvantage is that the effective range is limited due to the property of the magnetic field. To drive our
point, we draw two examples of one-shot calibration and MagSound in Figure 2 and Figure 3, respectively. In the
examples, the user is writing the letter ‘B’ by tracking the movement of the wireless earphone. Using one-shot
calibration, the writing trace of ‘B’ gets distorted over time due to the accumulated clock offset. In contrast,
using MagSound, the user can re-calibrate the acoustic ranging system by moving the earphone into the shaded
area where we predict the position using magnetic field strength. In this area, users do not need to keep the
earphone still, and experimental results show that the duration can be small enough to be negligible. Meanwhile,
MagSound collects the clock offset data to fit it using an explicit function. Once the earphone moves out of the
area, MagSound predicts the clock offset using the fitted function and cancels the clock offset to correct the
trace. As a result, we can see that trace ‘B’ keeps stable over time. Besides, to achieve accurate sensing under
weaker signals, we design a robust signal model to transmit the Zaddof-Chu (ZC) sequence in an Orthogonal
Frequency-Division Multiplexing (OFDM) manner. We mitigate the noise interference through signal correlation,
and the nice properties of the ZC sequence allow us to separate signals propagating through Line-of-Sight (LOS)
paths from multipath.
In a nutshell, we summarize our contribution into four points:

(1) We perform integrated magnetic and acoustic sensing. Based on the pros and cons of magnetic and acoustic
sensing, we carefully design a fusion algorithm to integrate the two modalities.

(2) To the best of our knowledge, we are the first to make on-the-fly clock offset corrections for wireless
earphones. Consequently, the performance of MagSound is stable over time, which pushes the earphone
tracking system into real-life applications.

(3) We design a robust signal model for earphone sensing. We use ZC sequence as the acoustic signal for the
earphone tracking system to mitigate problems, such as weaker transmitted signals, brought by the unique
characteristics of earphones.

(4) We implement a prototype of MagSound to evaluate the performance for potential applications on Com-
mercial Off-The-Shelf (COTS) devices, such as motion tracking and handwriting input.

(5) Experimental results show that MagSound maintains millimeter-level accuracy for 2D tracking under clock
drift and achieves a recognition accuracy of 95.43% for handwriting, which improves the baseline by 49.81%.
User evaluation shows that 93.75% of participants prefer MagSound over the touch screen based input
method on smartphones.

2 RELATED WORK
Existing works related to earphone tracking can be divided into three categories: sound-based sensing, magnet-
based tracking, and Inertial Measurement Unit (IMU) based tracking.

2.1 Sound-based Sensing
Techniques on sound-based sensing have developed rapidly in recent years, which can be further divided into
two categories, i.e., device-free sensing and device-based sensing, depending on whether a device is needed on
the object being sensed.
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For device-free sensing [11, 41, 43, 47, 58, 63, 65, 70], although circumvent the complicated synchronization,
they are more vulnerable to noise and multipath effect than device-based system. Recently, VSkin [58] and
StruGesture [63] track the finger gesture on the back of a smartphone by distinguishing the structure-borne
sounds. They transmit a novel signal called Zadoff-Chu (ZC) sequence to improve robustness to noise.
For device-based sensing [22, 46, 61, 62, 72], CAT [46] tracks the movement of a smartphone in millimeter-

level tracking accuracy using a distributed Frequency Modulated Continuous Wave (FMCW) ranging system,
where the transmitter (speaker) and the receiver (smartphone) are separate and asynchronous. CAT uses the
smartphone built-in IMU to detect whether the smartphone is stationary, and thereby makes re-calibration on the
run. SoundTrack [72] devises a ring with an embedded miniature speaker to transmit an acoustic signal, employs
an array of microphones to receive the signal, and localizes the finger’s 3D position afterwards. MilliSonic
[62] achieves sub-millimeter tracking accuracy based on the phase of FMCW signal. ASAT [22] performs
motion tracking by sensing the sound strength and achieves centimeter-level accuracy. VECTOR [61] monitors
temperature-field based on the sound speed with distributed acoustic devices.

Moreover, earphones have become a novel platform for device-based sensing with the development of earable
computing [12]. EarphoneTrack [7] applies wired earphones to 2D tracking and device-free scenario, achieving
millimeter-level accuracy. Between wireless earphone and smartphone, EarphoneTrack only presents the result of
1D tracking. Liu et al., [45] proposed an application called acoustic ruler, where the smartphone receives FMCW
acoustic signal transmitted by the earphone. Limited by Bluetooth microphones, the acoustic ruler employs the
audible spectrum (< 10 kHz) for FMCW signal to measure the 1D distance between the smartphone and the
earphone, and achieves a 1.7 cm error within 5 meters. FaceOri [66] modifies the earphone to get the raw acoustic
stream of built-in microphones and tracks the face movement using the headset as the receiver and a smartphone
as the transmitter. EarIO [40] tracks facial expressions in an AI-powered way. It transmits acoustic signals on a
wired earable towards the face, and inputs the received signal into a customized deep learning pipeline, which
predicts facial expressions. EarHealth [34] uses wired earphones to monitor hearing health by analyzing the
recorded echoes evoked by a chirp sound stimulus in ear.

To conclude, for earphone-based tracking systems, the tracking accuracy of the state of the arts is millimeter-
level. Besides, earphones have shown the potential to be a ubiquitous sensing platform. For device-based systems,
the difficulty lies in the synchronization between the transmitter and the receiver. Most related works assume
that the offset caused by the asynchronous clock is constant, and stall the device for a few seconds to perform
linear calibration before tracking. For specified hardware or smartphones the linear calibration may work, yet
for COTS wireless earphones, whose oscillators are smaller, the one-shot calibration would fail. We will further
discuss the clock offset problem in Section 3.2.2.

2.2 Magnet-based Tracking
Magnet-based tracking uses either permanent magnet or electromagnet. For permanent magnets, MagPen [30]
augments a pen with magnets, and recognizes the relative gesture based on the magnetic field strength directly.
TMotion [69] fuses the data from both magnetometer and gyroscope to track the movement of a pen, and achieves
millimeter-level error in 3D. MagX [9] utilizes an array of magnetometers to track the wearable permanent
magnet with robustness and high-efficiency. MAGIC [64] proposes a system framework for automatic calibration
of soft-iron and hard-iron disturbances of MEMS magnetometer arrays. For electromagnet, Finexus [10] equips
fingertips with electromagnets and performs fine-grained finger tracking with an average accuracy of 1.33 mm in
3D. AuraRing [49] designs an untethered ring that carries an electromagnet, and requires fewer sensors compared
with Finexus. Huang and Wu [29] pushed the error of electromagnet-based tracking into sub-millimeter level.

However, all the related works above require either extra permanent magnets or electromagnets. Permanent
magnet-based tracking requires multiple magnetometers to track the magnet. Besides, the distance is limited
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between the magnet and the magnetometer [9]. On one hand, to satisfy the assumption of dipole, the distance
should not be too small. On the other hand, due to the rapid decrease of the magnetic field strength, the ranging
distance should not be too large. As we make no modifications to COTS smartphone and earphone, their methods
are not applicable to the considered scenario.

2.3 IMU-based Tracking
In the field of motion tracking, IMU is another important sensor to sense, which includes gyroscope, accelerometer,
and compass. In this subsection, we mainly focus on accelerometer and gyroscope.
WriteAS [73] inputs the IMU data from a smartwatch to train a multimodal convolutional neural network

for handwriting recognition task at word-level. VibWriter [21] inputs the vibration signals collected by an
accelerometer in the smartphone to train a convolutional neural network for the letter recognition task. SoM [75]
tracks the wrist using the built-in IMU of a smartwatch. It requires a fixed smartphone that transmits acoustic
tones at intervals to get the radial displacement of the smartwatch as an auxiliary to IMU-base tracking. ITrackU
[8] fuses data from ultra-wideband radios (UWB) and IMU to track a pen-like instrument. Handwriting-Assistant
[6] designs a pen cap with IMU to track the movement of a pen at millimeter-level accuracy.
Nevertheless, most COTS earphones do not support IMU sensor, or have an IMU but hard to acquire data by

user interface. Therefore, existing works to sense on the earphone platform usually have to add specified IMU
sensors to the earphone [44, 68]. Nokia Bell lab once launched an experimental product that carries IMU called
eSense [36], but the product has reached its end of life according to the official announcement [37]. Besides,
distributed IMU sensing also suffers from synchronization [75].

3 OPPORTUNITY AND LIMITATIONS OF WIRELESS EARPHONE SENSING
Compared with other commercial sound emitting and recording devices, such as mobile phones and voice
assistants, the earphones have unique characteristics, which bring new opportunities as well as challenges when
they are used for sensing. In this section, we first discuss the opportunities of magnetic sensing and then the
limitations of sound-based sensing for earphones.

3.1 Opportunities of Magnetic Sensing on Earphones

DiaphragmVoice Coils

Magnet Housing

(a) Structure of dynamic driver

Diaphragm

Voice Coils

Magnet

Balanced Armature

(b) Structure of balanced armature driver

Fig. 4. Two major earphone structures
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(b) 𝐵𝑥 on x-axis
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(c) 𝐵𝑦 on y-axis
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(d) 𝐵𝑧 on z-axis

Fig. 5. Magnetic field strength 𝐵 (𝜇T) measured at the smartphone under different earphone positions

Most earphones have integrated magnet components which produce a magnetic field. To understand the
properties of the magnetic field of the earphone, we first provide a brief introduction to the structure of the
earphone. In general, earphones use headphone drivers to vibrate and drive air into the ear canal. There are
two major types of earphone drivers: dynamic driver and balanced armature driver [4], as illustrated in Figure
4. A dynamic driver consists of three core components: diaphragm, voice coils, and magnet. To produce sound,
the corresponding current signal runs through voice coils, which then become electromagnetic and repel or
attract alternately with magnets. The diaphragm would vibrate with the movement of voice coils since they are
connected, and thus moves the air to make the sound. The balanced armature driver also uses the principle of
electromagnetic induction. However, in balanced armature drivers, voice coils warp a balanced armature which
would become an electromagnet when the current signal runs through voice coils. The electromagnetic balanced
armature would move periodically and stimulate the vibration of the diaphragm. Most earphones use one of the
two structures, or a mix of both structures. Generally, both types of earphone drivers use strong magnets to
convert electrical energy into acoustic energy. To improve performance, an earphone often uses multiple drivers,
which means there are multiple magnets in a single earphone. The magnetic field strength around the magnet
used in earphones can reach 1.45 T [67], which is at the same level as magnetic resonance imaging. However,
strong magnets may cause health problems for long-term users [39]. Therefore, most earphones use careful
designed structure, such as electromagnetic shielding, to reduce the magnetic field strength to conform with the
WHO standard [48]. For COTS earphones, the strength of static magnetic field is lower than 1 mT outside the
earphone [35]. Meanwhile, the time-varying magnetic field is reduced to below 0.1 𝜇T [42], which is negligible
compared with the static magnetic field due to the accuracy of the built-in magnetometer in smart devices [2].
To study the feasibility of using magnetic field to assist earphone tracking, we measure the magnetic field

strength 𝐵 of the earphone using the smartphone’s magnetometer. The coordinate system used in themeasurement
is shown in Figure 5(a), where we measure the reading of the magnetometer when the earphone is placed at
different grid points separated by one centimeter. The measurement device is a Google Pixel 4 smartphone and
the earphone is a Samsung Galaxy Buds Pro. The measurement of different components of the magnetic field
are presented in Figures 5(b), 5(c), and 5(d). We observe that the distributions of 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 are different,
with a maximum magnetic field strength less than 50 𝜇𝑇 . The highest magnetic readings for all magnetic field
components appear at around the point (8, 1), where the magnetometer of the Google Pixel 4 is located. Moreover,
as the static magnetic field decays with the distance 𝑑 with a rate proportional to 𝑑−3, the field is barely detectable
when the distance between the earphone and the magnetometer is more than 10 cm.

In summary, while the magnetic field of the earphone is weak, a commercial smartphone can still reliably
detect the earphone when it is close. In addition, the distribution of the three components of the magnetic field is
closely related to the position of the earphone so that they can serve as fingerprints to localize the earphone.
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3.2 Limitations of Sound-base Sensing on Earphones
There are two key limitations of the sound signal produced by the earphone, when compared with the speakers
on smartphones or voice assistants.

3.2.1 Poor Frequency Response. The first limitation is the poor frequency response of the earphone. Frequency
response is a quantitative metric to evaluate the magnitude of the sound output as a function of input frequency
[57]. Most earphones support a frequency band from 20 Hz to 20 kHz, which is also generally accepted as the
audible frequency range. However, limited by their small shape, earphones focus on boosting the frequency
response below 10 kHz, while ignoring the high frequency bands around 20kHz that are widely used for sensing.
Figure 6 plots the frequency response curve of Samsung Galaxy Buds Pro and Apple AirPods Pro, using the data
from RTINGS [32, 53]. The data from RTINGs are measured when the earphones are worn by a head simulator.
The unit used for frequency response is Sound Pressure Level (SPL), which is defined as

𝑆𝑃𝐿 = 20 log10

(
P

P0

)
, (1)

whereP is the stimulated sound pressure,P0 is the constant reference pressure. In brief, SPL is proportional
to the amplitude of the measured signal in decibels. We observe that the frequency response fluctuates beyond
10kHz. Moreover, the frequency response drops significantly when the frequency is over 16 kHz.

To investigate the impact of distance on the signal strength, we place the speaker at different distances to a
sound level meter. We set the volume to the maximum value. Then on the speaker, we play the ZC sequence,
which is an acoustic signal with a center frequency at 14 kHz, and profile the signal strength in unit of dBA. We
perform the experiments on a smartphone Google Pixel 4 [15] and three different earphones, including Apple
AirPods Pro [3], Samsung Galaxy Buds Pro [18], and Xiaomi Redmi Buds 3 [19]. As a reference, we also profile
the ambient noise level during the measurement. The results are drawn in Figure 7. We can see that the signal
strength of all earphones are significantly weaker than smartphones. Worse still, when the distance is more than
10 cm, the strength of the signal transmitted by earphones is close to the ambient noise, which means a much
lower signal-to-noise ratio (SNR) than the smartphone.

As the frequency response determines the amplitude of emitted signals, poor frequency response may reduce
the SNR of the captured sound. Therefore, we should carefully design the sensing signal to handle such poor
frequency response on most earphones.
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(a) Clock offset of Samsung Galaxy Buds Pro
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(b) Clock offset of AirPods Pro
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(c) Clock offset of Xiaomi Redmi Buds 3

Fig. 8. Measured clock offset between smartphone and different earphones

3.2.2 Synchronization Problem in Wireless Earphones. Clock offset is a common problem for distributed ranging
systems. Wireless earphones and smartphones use local oscillators separately, which brings the clock offset
problem. What’s worse, limited by its small size, earphones have to use oscillators that are less accurate than that
in smartphones [7]. According to [14], the frequency accuracy for local oscillators on consumer applications can
be ±50 ppm (high accuracy mode) or ±1000 ppm (normal accuracy mode). Using different clocks, the clock offset
would accumulate over time.

To deal with this problem, existing methods perform calibration every time when the system begins to play
back, or record [7, 62, 66, 72]. At the begging of each run, they fix the positions of the two devices individually,
take several seconds to record the signal, and compute the average offset between two frames. Then during the
tracking, they calibrate the clock offset linearly by compensating the average offset for each frame.

However, it is difficult to calibrate the clock offset between the smartphone and wireless earphones. We perform
a feasibility study to calibrate the clock offset linearly. We measure the clock offset between a smartphone and
three different types of wireless earphones when their positions are fixed, and present the results in Figure 8. We
compute the clock offset from the phase offset of ZC sequence at a frequency of 14 kHz, and the sampling rate is
48 kHz. We collect the data for 240 seconds, and use the first 24 seconds to linearly fit the offset, which is shaded
in red. Although we take longer time to calibrate offset than existing methods, after 240 seconds, the accumulated
clock offsets with calibration are 0.09 ms, 4.18ms, and -0.126 ms for Samsung Galaxy Buds Pro, Apple AirPods
Pro, and Xiaomi Redmi Buds 3, respectively. Even for the earphone with the smallest clock offset, there would be
a ranging error of 3.10 cm given that the sound speed is 343 m/s, which is beyond the millimeter-level error in
phase based ranging. Besides, we also observe that curves jitter occasionally over time. From the figures, we can
see that the clock offset between smartphone and earphones is nonlinear over time. Besides, for different types of
device, the patterns of clock offset over time are also different.

There are two possible reasons for this phenomenon. For one thing, the performance of the oscillator is affected
by temperature, and the relationship between the temperature and the frequency offset is polynomial [55],
influenced by hardware-specific parameters. So, once the system starts, the temperature rises inevitably, and
the clock offset changes nonlinearly. For another thing, from Figure 8, we observe that the clock offset pattern
in the first tens of seconds is different from that after. Since Phase-Locked Loops (PLL) have been adopted in
audio systems [28], it would take some time to initialize PLL, which interferes with the estimation on the offset.
Therefore, even if we use a nonlinear function for one-shot calibration, the error due to the clock offset is usually
larger than if we use a linear function. Additionally, the duration of the PLL is usually unknown for COTS wireless
earphones, so it is difficult to avoid this problem by skipping a short period of time at the beginning.
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To conclude, calibrating clock offset in a fashion of one-shot fitting would accumulate errors over time when
tracking the wireless earphones, which limits the application of acoustic tracking system.

4 SYSTEM DESIGN

4.1 System Overview

Acoustic Signal

Magnetic Field 

Strength

Acoustic 

Coordinates 

Magnetic 

Coordinates

Neural Network

Signal Correlation

Coordinate Fusion

Clock Calibration

Fused Coordinates

Applications

AlgorithmsScenario

Handwriting

Motion Tracking

 ...

Fig. 9. Processing pipeline of MagSound

In this paper, we build an integrated wireless earphone tracking system, MagSound, which uses the built-in
magnet to improve the tracking robustness against clock skew and multipath. Figure 9 illustrates the architecture
of the proposed system. In our considered scenario, the user moves the wireless earphone, which emits the acoustic
signal. We collect both magnetic field strength and acoustic signals from the microphones and the magnetometer
of the smartphone, respectively. For magnetic field strength, we feed it into a pretrained neural network, and get
the predicted coordinates, which we callmagnetic coordinates. For acoustic signals, we first demodulate it and then
compute the distance from the earphone to microphones based on the impulse response after cross-correlation.
With the distance to the two microphones of the smartphone, we compute the coordinates, which we call acoustic
coordinates, and feed it together with the magnetic coordinates into the fusion and calibration module, where
we perform clock calibration and coordinate fusion. The result of clock calibration would improve the accuracy
when we compute acoustic coordinates. We fuse the magnetic coordinates and the acoustic coordinates, and the
fused coordinates are more accurate than the acoustic coordinates over time. We can apply it to applications such
as motion tracking and handwriting.

4.2 From Magnetic Field Strength to Coordinates
In this section, we first discuss the characteristics of the magnetic field around earphones. Then we perform
magnetic field strength based tracking using machine learning models, which take the magnetic field strength as
the input and the coordinate as the output. Based on the comparison between different machine learning models,
we finally choose neural network model for MagSound.
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4.2.1 Principles of Magnetic Field Tracking. Since the earphone is magnetic, the built-in magnetometer of the
smartphone can sense the movement of the earphones. If far enough from the phone, the earphone can be modeled
as a point of magnetic dipole. According to [13], the relationship between the earphone’s relative position and
the measured magnetic field strength can be formulated as

𝑩(𝒅) = 𝑮 + 𝜇0

4𝜋

(
3𝒅 (𝒎 · 𝒅)

∥𝒅∥5 − 𝒎

∥𝒅∥3

)
, (2)

where 𝒅 is the vector from the earphone to the built-in magnetometer,𝒎 is the vector of magnetic dipole moment,
and 𝜇0 is the vacuum permeability constant. Background magnetic field, including the Earth’s geomagnetic field,
also influences the measurement, and we denote it as 𝑮 in the equation.

However, deriving the distance ∥𝒅∥ using Equation 2 is difficult in the considered scenario due to two reasons:
(1) The equation is underdetermined. In total, there are 9 parameters to determine from 𝒅, 𝒎, and 𝑮 . However,

we only have one magnetometer, which brings three equations corresponding to three axes.
(2) The ideal model may not hold in practice. As we have illustrated in Section 3.1, the changes in magnetic

field strength with distance are discriminable only in the range of a few centimeters. Considering the size
of earphones, the assumption of magnetic dipole may fail in this small range.

In fact, it is impractical to propose an explicit model of the magnetic field between the earphone and the
smartphone, because different types of devices have different magnetic field distributions. Fortunately, there is
a deterministic correlation between 𝒅 and 𝑩, as 𝑩 decreases from the earphone to all around according to the
preliminary study in Section 3.1.

4.2.2 Learning-based Tracking using Magnetic Field Strength. Denote the 2D coordinate of the earphone as 𝑷 ,
and the measured magnetic field strength vector as

𝑩 = 𝑮 + 𝑩∗, (3)

where 𝑩∗ is the magnetic field strength vector from the earphone. As aforementioned, there is a stable relationship
between 𝑷 and 𝑩∗. Therefore, we can use machine learning models to fit the implicit mapping from 𝑩∗ to 𝑷 .

To collect the ground truth, we first draw a grid, and then place the earphone on each grid point to collect the
readings of the built-in magnetometer. The grid can be placed close to the phone’s built-in magnetometer. The
size of the grid is 12 cm × 7 cm, with a granularity of 1 cm. For each grid point, we collect the readings for 2
seconds and set the sampling rate to 100 Hz, which means we can collect more than 20,000 samples within 5
minutes. In total, we collect five groups of data for each pair of earphone and smartphone.
However, we have to remove the background magnetic field before we start training, because the strength

of the background magnetic field is close to that of the magnetic field around the earphone. According to [38],
geomagnetic field strength ranges from 20 𝜇T to 68 𝜇T, and will change due to the location of the device or the
change of time. We find that the total intensity of the earth’s magnetic field varies by only a few tens of nT with a
fundamental period of 24 hours [38]. Besides, we observe that the background magnetic field strength is almost
the same at each grid point in one run. Therefore, we can eliminate the background magnetic field strength by
choosing one grid point as a reference point. Formally, we denote 𝑩𝑘 as the measured magnetic field strength
vector of the selected point, and 𝑩𝑖 , 𝑖 ≠ 𝑘 , as the measured magnetic field strength vector of the 𝑖-th point. Then
we perform

𝑩𝑖 − 𝑩𝑘 = (𝑮𝑖 − 𝑮𝑘 ) + (𝑩∗
𝑖 − 𝑩∗

𝑘
)

≈ 𝑩∗
𝑖 − 𝑩∗

𝑘
.

(4)

Next, we train machine learning models using 𝑩𝑖 − 𝑩𝑘 . Meanwhile, when tracking the earphone, we hold the
earphone and collect the readings of the built-in magnetometer in the first few seconds, and perform the same
operation to feed the data into the model for inference.
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Table 1. Settings of each machine learning model

Name Setting Error (cm) Size (Kb) Inference Time per Sample (ms)

RF 100 trees, at least 2 samples to split 0.76 43,581 0.011
SVR RBF kernel, regulation parameter 𝐶=100 0.94 683 5.790
NN 3 hidden layers, each with 100 neurons 0.82 495 0.014
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Fig. 10. Localization error distribution (cm)

We use 4 groups of data for training and 1 group of data for testing, and compare the performance between
3 light-weighted machine learning models: random forest (RF), support vector Regression (SVR), and neural
network (NN). The setting, the average localization error, and the size of each model are illustrated in Table 1.
We use radial basis function (RBF) as the kernel function of SVR. We evaluate the inference time per sample of
different models on a desktop with Intel i7-8700U CPU. We can see that all the models achieve millimeter-level
error, and the overhead of NN is more balanced compared with RF and SVR. As is shown in Figure 10, the error
of NN distributes more evenly than the others. So, we choose NN as the machine learning model to track the
earphone using magnetic field strength. Note that a machine learning model trained on data collected from
one model of earphone - smart device pair can be directly used on other earphone - smart device pairs of the
same model, since the magnetic field strength distribution of the same model of device is expected to be similar.
However, when the model of the earphone or smart device is changed, it is necessary to re-collect the data and
train a new neural network model.
Finally, we call the area where we have collected data as magnetic trackable area, and the coordinate from

magnetic field strength as magnetic coordinate 𝑷𝑚 . Based on localization error distribution, we define an area
Ω called effective magnetic area from the magnetic trackable area, such that the localization error of 𝑷𝑚 in Ω is
smaller than a threshold 𝜀. Here, a feasible algorithm to obtain Ω in a depth first search (DFS) manner is presented
in Algorithm 1, where the input 𝑷 0 can be the coordinate with the strongest magnetic field strength, and 𝜀 is
usually set to 1 cm. As is shown in Figure 11, depending on the shape, users can hold the earphone in different
ways. When the earphone moves into the effective magnetic area (shaded area in Figure 11), the posture of
holding the earphone should be the same as when the magnetic fingerprint was collected.
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Algorithm 1: Effective Magnetic Area Division Algorithm
Input: Error distribution of the magnetic trackable area, a starting point 𝑷 0 = (𝑎, 𝑏), threshold 𝜀.
Output: Boundaries of effective magnetic area Ω.

1 Mesh the magnetic trackable area to get a graph 𝐺 of𝑚 × 𝑛, where 𝐺 [𝑖, 𝑗] ∈ 0, 1 denotes whether the
localization error at point (𝑖, 𝑗) is smaller than 𝜀 or not;

2 𝑠𝑡𝑎𝑐𝑘.𝑝𝑢𝑠ℎ(𝑷 0);
3 𝑍 = ∅;
4 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑧𝑒𝑟𝑜𝑠 (𝑖, 𝑗);
5 𝑍 = 𝐷𝐹𝑆 (𝐺, 𝑠𝑡𝑎𝑐𝑘, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑);
6 Output 𝑍 .

Fig. 11. Holding different earphones

4.3 From Acoustic Signal to Coordinates
In this section, we build a robust signal model for MagSound. We first explain our design on transmission signals
and the corresponding benefits. Then, we introduce how we perform signal modulation and demodulation. Finally,
we calculate the phase shift caused by the movement of the earphone, and consequently the acoustic coordinates
by optimization.

4.3.1 Transmission Signal Design. Using the earphone, we transmit Zadoff-Chu (ZC) sequence [71] in an OFDM
manner for acoustic ranging. Formally, a ZC sequence with a length of 𝑁 can be described with

𝑍𝐶 [𝑛] = 𝑒𝑥𝑝

(
− 𝑗

𝜋𝑛𝑟 (𝑛 + 𝑐 𝑓 + 2𝑞)
𝑁

)
, 𝑗 =

√
−1, (5)

where 0 ≤ 𝑛 < 𝑁 , 𝑞 ∈ 𝑍 , 𝐶𝑓 = 𝑁 𝑚𝑜𝑑 2, 0 < 𝑟 < 𝑁 , and 𝑔𝑐𝑑 (𝑁, 𝑟 ) = 1. 𝑍𝐶 (𝑛) represents the 𝑛-th sample point.
Parameter 𝑟 is also called the root of the ZC sequence. ZC sequence owns the property of constant amplitude and
zero auto-correlation at non-zero lags [50], which brings the following advantages in the acoustic sensing system:
(1) The power of ZC sequence is stable, and thereby reduces requirements for earphone quality. Signals with

inconstant power would cause the instantaneous power of the speaker to fluctuate significantly at times.
Hence, the speaker needs more circuit components to operate without distortions and being damaged.

(2) ZC sequence has the ideal periodic auto-correlation function. The auto-correlation result of a ZC sequence
is non-zero only at 𝑛 = 0. This would help us determine the phase shift at the receiver.
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Fig. 12. Auto-correlation of ZC sequence without noise
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Fig. 13. Auto-correlation of ZC sequence with noise

(3) ZC sequence has a good cross-correlation function. For two ZC sequences whose roots are co-prime, their
correlation peak is almost zero. This means the ZC sequence is robust to noise and can be distinguished
from other signals.

(4) The result of the Fourier transform of a ZC sequence is still a ZC sequence. Hence, either Fast Fourier
Transform (FFT) or Inverse Fast Fourier transform (IFFT) would not change the property of the ZC sequence.

In fact, ZC sequence has been widely used in recent related works [58, 63]. In our study, we set 𝑞 = 0, 𝑁 = 41,
and 𝑟 = 5 to generate a ZC sequence.

4.3.2 Signal Modulation and Demodulation. We modulate the ZC sequence in an OFDM manner. A widely
accepted frequency threshold for ultrasound is 20 kHz [59]. Unfortunately, as mentioned in Section 3.2.1, most
COTF wireless earphones have poor frequency response when the frequency is above 15 kHz. Therefore, to
minimize the disturbance to the user while ensuring compatibility with most earphones, we set the center
frequency 𝑓𝑐 to 14 kHz and the bandwidth to 1025 Hz. After interpolation, we get a sequence of length 𝐿 = 1920.
We set the sampling rate to 48 kHz, so the period of a received frame is 1920

48000 = 40 ms, which is small enough to
sense movement.
Meanwhile, the smartphone records the signals using built-in microphones, with the sampling rate 𝑓𝑠 = 48

kHz. Denote the transmitted signal as 𝑍𝐶𝑇 , the received signal as 𝑍𝐶𝑅 , and 𝑟𝑜𝑢𝑛𝑑 (𝑎) as the integer part of 𝑎.
Due to the multipath effect, the received signal is a superposition of multiple copies of transmitted signals with
different delays, which can be described with

𝑍𝐶𝑅 [𝑛] =
𝑀∑︁
𝑖=1

𝐴𝑖𝑒𝑥𝑝 (− 𝑗𝜙𝑖 )𝑍𝐶𝑇 [𝑛 − 𝑟𝑜𝑢𝑛𝑑 (𝜏𝑖 𝑓𝑠 )] , (6)

where 𝑀 is the number of propagation paths, 𝐴𝑖 is the attenuation coefficient for the 𝑖-th path, 𝜙𝑖 ∈ (−𝜋, 𝜋)
represents the phase shift caused by propagation, and 𝜏𝑖 is the time of flight (ToF) for the 𝑖-th path.

To get the ToF for the direct path, i.e., LOS path, we first perform FFT on the received signal. Next, we estimate
the Channel Impulse Response (CIR) by conjugating the received signal 𝑍𝐶𝑅 and cross-correlating it with the
transmitted signal 𝑍𝐶𝑇 by multiplication in the frequency domain. We upsample the signal in the frequency
domain by zero-padding to a length of 𝐿 and then perform IFFT back to the time domain. Since the OFDM
signal has a rectangular frequency gate function and a limited band, the corresponding time-domain CIR is
the convolution of the sinc function with the impulse response. Finally, since the ZC sequence has the ideal
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periodic auto-correlation function, we would observe several peaks which represent different delays of different
propagation paths.

To test the robustness of the generated ZC sequence to noise, we first simulate the auto-correlation of the ZC
sequence without noise in Figure 12. Then, we set SNR to 0 dB, and simulate the auto-correlation with noise in
Figure 13. We can see that the peak is clear and distinguishable in both figures.

4.3.3 Phase-based Tracking. In practice, we care about the direct path from the earphone to the smartphone,
i.e., the LOS path. In other words, we calculate the ToF 𝜏1 of the first propagation path. From Equation 6, the ZC
sequence transmitted through LOS path is

𝑍𝐶𝑅
1 [𝑛] = 𝐴1𝑒𝑥𝑝 (− 𝑗𝜙1)𝑍𝐶𝑇 [𝑛 − 𝑟𝑜𝑢𝑛𝑑 (𝜏1 𝑓𝑠 )] . (7)

To calculate the ToF 𝜏1 of the first propagation path, we take the index of the first peak in CIR, which is actually
the integer part of 𝜏1 𝑓𝑠 , i.e., 𝑖𝑛𝑑1 = 𝑟𝑜𝑢𝑛𝑑 (𝜏1 𝑓𝑠 ). To find 𝑖𝑛𝑑1, we first find the maximum value 𝐴𝑚𝑎𝑥 in CIR, and
then iterate the CIR to find the first value over 𝐴𝑚𝑎𝑥 · 𝜖 and the corresponding index, where 𝜖 is a threshold to
control the robustness.
The corresponding CIR of the LOS path is a sinc function as

𝐶𝐼𝑅 [𝑖𝑛𝑑1] = 𝐴1𝑒𝑥𝑝 (− 𝑗𝜙1)𝑠𝑖𝑛𝑐 [𝑛 − 𝑟𝑜𝑢𝑛𝑑 (𝜏1 𝑓𝑠 )] . (8)

We compute the phase shift 𝜙1 of this complex value. As 𝜙1 ∈ (−𝜋, 𝜋), we accumulate the phase change by adding
or subtracting 2𝜋 to phase to get the phase shift Φ1 caused by ToF through the LOS path. Then the ToF through
the LOS path is derived as

𝜏1 =
Φ1

2𝜋 𝑓𝑐
. (9)

Since there are two built-in microphones, we can achieve 1D or 2D tracking with COTS smartphones. Without
loss of generality, we introduce our method for 2D tracking as an example. Following related works in [7, 66], we
first place the earphone at a known position 𝑷 0 for calibration of a few seconds. Since the devices are fixed at
this time, we can collect the clock offset 𝛿 of each frame, and then take the average 𝛿 as the constant clock offset
after the calibration. Besides, we compute the initial distance from the earphone to the microphones and the
initial phase.

Traditionally, the 2D coordinate of the earphone can be computed by solving a system of geometric equations:{
𝑑𝑖𝑠𝑡

(
𝑷 , 𝑷 1) = 𝑑1

𝑑𝑖𝑠𝑡
(
𝑷 , 𝑷 2) = 𝑑2

, (10)

where 𝑑𝑖𝑠𝑡 (𝑨,𝑩) computes the distance between point 𝑨 and point 𝑩. However, different from existing works,
we compute the coordinates while tracking the earphone by solving an optimization problem. This is because
the clock offset problem in wireless earphones is significant, and it is common that the system of equations
has no solution. In contrast, solving an optimization problem can always return a solution. Specifically, for the
𝑖-th microphone, we cancel out the clock offset, compute the accumulated distance change of each channel and
update the distances between the earphone and the microphone as 𝑑1 and 𝑑2. We denote the coordinate of the
earphone as 𝑷 , the 𝑖-th microphone as 𝑷 𝑖 , and optimize the following objective function:

min
𝑷

{(
𝑑𝑖𝑠𝑡

(
𝑷 , 𝑷 1) − 𝑑1

)2 +
(
𝑑𝑖𝑠𝑡

(
𝑷 , 𝑷 2) − 𝑑2

)2
}
. (11)

To optimize the objective function, we use COBYLA solver [52] that can solve a constrained problem with low
delay by linear approximation. Finally, we call the coordinate from acoustic signal as acoustic coordinate 𝑷𝑎 ,
which uses one-shot linear calibration.
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Algorithm 2: Clock Offset Calibration Algorithm
Input: Magnetic coordinate 𝑷𝑚𝑖 in the 𝑖-th frame, acoustic coordinate 𝑷𝑎

𝑖 in the 𝑖-th frame, effective
magnetic area Ω, objective function 𝐿.

Output: Estimated parameter vector 𝒙 of ℎ(𝑖).
1 𝑓 𝑙𝑎𝑔 = 0 ;
2 𝑭 = [];
3 foreach 𝑓 𝑟𝑎𝑚𝑒𝑖 do
4 if 𝑷𝑚𝑖 ∈ Ω then
5 𝑓 𝑙𝑎𝑔 = 1;
6 𝑜 𝑓 𝑓 𝑠𝑒𝑡 = 𝑔𝑒𝑡𝑂 𝑓 𝑓 𝑠𝑒𝑡 (𝑷𝑚𝑖 , 𝑷𝑎

𝑖 );
7 𝑭 .𝑎𝑑𝑑 (𝑜 𝑓 𝑓 𝑠𝑒𝑡);
8 else
9 if flag == 1 then
10 𝒙 = argmin

𝒙
𝐿(𝑭 ; 𝒙);

11 end
12 𝑓 𝑙𝑎𝑔 = 0;
13 end
14 end

4.4 Clock Calibration
Using magnetic coordinate 𝑷𝑚 , the tracking of the earphone would not be affected by the clock offset when the
earphone moves inside Ω. However, the clock offset between two adjacent frames would change over time. When
the earphone keeps moving outside Ω, the offset still accumulates. Thus, in this subsection, we try to fit the clock
offset multiple times using 𝑷𝑚 in a nonlinear way to calibrate it.
Without loss of generality, for one channel, the clock offset function can be expressed explicitly by ℎ(𝑡 ; 𝒙),

where 𝒙 denotes the vector of parameters to estimate. For example, if we assume that ℎ(𝑡 ; 𝒙) is a quadratic
function of 𝑡 , then the expression is

ℎ(𝑡 ; 𝒙) = 𝑎𝑡2 + 𝑏𝑡 + 𝑐 (𝑎 ≠ 0), (12)
where 𝒙 = (𝑎, 𝑏, 𝑐).

The calibration algorithm is presented in Algorithm 2. When 𝑷𝑚𝑖 ∈ Ω, we take 𝑷𝑚𝑖 as the ground truth, and
compute the clock offset in 𝑷𝑎

𝑖 . Then we collect the offsets in the array 𝐹 , and for the first frame where the
earphone moves out of Ω, we estimate 𝒙 by minimizing the objective function 𝐿(𝑭 ; 𝒙). When ℎ(𝑡) is a quadratic
function of 𝑡 , an example of the objective function is

𝐿(𝑭 ;𝑎, 𝑏, 𝑐) =
𝑛∑︁
𝑖=1

(𝑎𝑖2 + 𝑏𝑖 + 𝑐 − 𝑭 [𝑖]) +
����𝑎 − 𝑎0

𝑎0

���� + ����𝑏 − 𝑏0

𝑏0

���� , (13)

where 𝑎0 and 𝑏0 are the initial guess of 𝑎 and 𝑏, respectively, and 𝑛 is the size of 𝑭 . Note that we regularize 𝑎 and
𝑏 in case that the parameters deviate too much. To minimize the objective function, we use the Powell solver [51]
that avoids calculating derivatives and converges fast.
In the beginning, when the size of 𝑭 is small, it is difficult to fit ℎ(𝑡), yet the performance of Algorithm 2

improves as the size of 𝑭 increases. To verify the idea, we perform a simulation test based on the data collected
in Section 3.2.2. We assume that the earphone moves into the effective magnetic area Ω every 60 seconds, and
moves inside Ω for 6 seconds. We calibrate the clock offset linearly in the first two rounds, and then model ℎ(𝑡)
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(a) Clock offset of Samsung Galaxy Buds Pro
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(b) Clock offset of AirPods Pro

0 60 120 180 240
Time (s)

−0.03

−0.02

−0.01

0.00

0.01

C
lo

ck
 O

ffs
et

 (m
s)

Measurement
After calibration

(c) Clock offset of Xiaomi Redmi Buds 3

Fig. 14. Simulated clock offset calibration on different earphones

Table 2. Comparison between magnetic coordinate and acoustic coordinate

Name Clock Offset Multipath Effective Distance Localization Error Level

Magnetic coordinate No No 5 cm to 10 cm Millimeter
Acoustic coordinate Big Yes Within 1 meter Millimeter

as a quadratic function. The calibration result is shown in Figure 14, where the calibration stage is represented by
red shaded areas. Finally, the clock offsets after calibration are 0.008 ms, -0.22 ms, and -0.004 ms for Samsung
Galaxy Buds Pro, Apple AirPods Pro, and Xiaomi Redmi Buds 3, respectively. Although we only used a quarter of
the calibration time of one-shot calibration, the nonlinear multi-shot calibration reduced the offset to 3.17% of
the one-shot calibration for Xiaomi Redmi Buds 3. As expected, after the first calibration, the calibrated offset is
even larger than one-shot calibration since we take much less calibration time. However, the calibrated offset
decreases quickly since the second calibration, and converges to 0 in the end. In this way, MagSound maintains
millimeter-level error when tracking the earphone over time. We also tried higher order expressions of ℎ(𝑡),
but the fitting error is bigger than the quadratic function at the beginning. In the end, we can get ℎ(𝑡) for each
channel, i.e., there would be two clock offset functions in 2D tracking. We hereafter denote the clock offset of all
channels as a vector 𝒉(𝑡).

4.5 Coordinate Fusion
Now we have a magnetic coordinate 𝑷𝑚 and an acoustic coordinate 𝑷𝑎 , and the features of the two modalities
are compared in Table 2. Before we introduce the coordinate fusion algorithm, we first analyze the clock offset in
𝑷𝑎 . In the 𝑖-th frame, denote the clock offset as 𝛿𝑖 , the accumulated propagation delay by Equation 9 as 𝜏𝑖 , and
the accumulated propagation delay without clock offset as 𝜏∗𝑖 . For the 𝑛-th frame of tracking, we have

𝜏𝑛 = 𝜏∗𝑛 +
𝑛∑︁
𝑖=1

𝛿𝑖 . (14)

Hence for two adjacent frames, the difference between their propagation delay is

𝜏𝑛+1 − 𝜏𝑛 = (𝜏∗𝑛+1 − 𝜏∗𝑛) + 𝛿𝑛+1. (15)
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Algorithm 3: Coordinate Fusion Algorithm
Input: Magnetic coordinate 𝑷𝑚𝑖 in the 𝑖-th frame, acoustic coordinate 𝑷𝑎

𝑖 in the 𝑖-th frame, effective
magnetic area Ω, clock offset function 𝒉(𝑡).

Output: Fused Coordinate 𝑷 𝑓

𝑖
in the 𝑖-th frame.

1 foreach 𝑓 𝑟𝑎𝑚𝑒𝑖 do
2 𝑽 = 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒 (𝑷𝑎

𝑖 ,𝒉(𝑖)) − 𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑒 (𝑷𝑎
𝑖−1,𝒉(𝑖)) ;

3 if 𝑷𝑚𝑖 ∈ Ω then
4 𝑷 𝑓

𝑖
= 𝑷𝑚𝑖 ;

5 else
6 𝑷 𝑓

𝑖
= 𝑷 𝑓

𝑖−1 + 𝑽 ;
7 end
8 end

The key insight is that in one frame, the clock offset 𝛿𝑖 is small, and thereby the difference between acoustic
coordinates from two adjacent frames is small enough to ignore. For example, in Figure 8(a), the distance error
caused by clock offset between two adjacent frames is less than 0.005 mm. What’s even better, this small error
would be further mitigated when we use the clock offset function ℎ(𝑡) to calibrate per frame. So, we can improve
the accuracy by limiting the offset accumulation using magnetic coordinate 𝑷𝑚 .

Accordingly, we formulate the coordinate fusion algorithm in Algorithm 3. Suppose that we have obtained the
clock offset function 𝒉(𝑡) corresponding to each frame by Algorithm 2. For the 𝑖-th frame, we first calibrate 𝑃𝑎𝑖 ,
and then calculate the displacement 𝑽 between calibrated acoustic coordinates in two adjacent frames. Next, if
𝑷𝑚𝑖 ∈ Ω, we take 𝑷 𝑓

𝑖
= 𝑷𝑚𝑖 . Otherwise, we take 𝑷

𝑓

𝑖
= 𝑷 𝑓

𝑖−1 + 𝑽 . It is worth noting that when the earphone moves
outside the preset grid, the predicted coordinates by the model would be around the edges of the grid, because
the measured magnetic field strength is indistinguishable when the earphone moves far enough away.
There are mainly two advantages of the Algorithm 3:

(1) The clock offset accumulation is limited. When the earphone moves into Ω, we straightforwardly take
𝑷 𝑓

𝑖
= 𝑷𝑚𝑖 . Denote the last fused coordinate when the earphone is in Ω as 𝑷 𝑓

𝑗
. When the earphone moves

out of Ω, the following fused coordinate would be

𝑷 𝑓

𝑗+𝑘 = 𝑷 𝑓

𝑗
+

𝑗+𝑘∑︁
𝑖=𝑗+1

𝑉𝑖 . (16)

Thus, the clock offset would accumulate for at most 𝑘 frames, and once the earphone moves into Ω, the
accumulated clock offset is removed.

(2) The fused coordinate is robust to multipath. For one thing, when the earphone moves near the smartphone,
there would be a serious multipath effect by the reflection of the smartphone’s body. Fortunately, this is
just the time when the earphone moves into Ω, and we take the magnetic coordinate 𝑷𝑚𝑖 as the fusion
result, which is not affected by multipath. For another thing, similarly to clock offset, the error caused by
multipath when the earphone is outside Ω would not accumulate and would be removed once the earphone
moves into Ω.
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Fig. 15. Trajectories of MagSound

5 EVALUATIONS

5.1 Implementation
We implement a prototype of MagSound to verify its performance on 2D tracking and handwriting. To facilitate
the use of optimizers and machine learning models, we implement MagSound using a client-server architecture.
We develop an app on the Android platform, which transmits the acoustic signal and collects both the audio and
magnetometer readings. The transmitted ZC signal has a center frequency of 14 kHz and a frame length of 40 ms.
The sampling rate of the microphone is 48 kHz. We set the sampling rate of the magnetometer to 100 Hz, which
means there would be 4 readings in a frame of 40 ms. We take the average of the 4 readings and pack it together
with the audio frame into a binary packet. Besides, a stand-alone software is developed on PC platform to receive,
process and visualize data in real time. The default devices are Google Pixel 4 and Samsung Galaxy Buds Pro. At
the beginning of each run, we hold the earphone for 4 seconds for one-shot calibration. During the experiments,
users may constantly move the earphone inside the effective magnetic area for 5-10 seconds for calibration. Once
we detect the earphone entering the effective magnetic area, we collect the clock offset, and then perform the
re-calibration when the earphone moves out of the effective magnetic area. In practical applications, users do
not need to remember the boundaries of the effective magnetic area in detail. Still, they only need to move the
earphone close to the smartphone after writing a trace each time. We call the tracking method that only uses
acoustic signals and calibrates the clock offset once at the beginning as One-shot in the experiment.

5.2 2D Tracking
5.2.1 Setup. For 2D tracking, we first draw the trace on a grid of paper as the ground truth, and then move
the earphone along the trace. Unless stated, we draw a rectangle of 15 cm × 10 cm for four times in one run
and calibrate the earphone at the intervals. The initial distance between the earphone and the smartphone is 10
cm. The average running time is 240.08 seconds for one run. We compute the tracking error after aligning the
captured trace with the ground truth using dynamic time warping [31]. By default, we use a wooden table with
metal supports in the experiment.

5.2.2 Comparison with One-shot Calibration. We use the earphone to draw three different shapes, i.e., rectangle,
triangle and circle, and compare the tracking accuracy between MagSound and One-shot. In each run, we draw
the shape four times, and calibrate the earphone at the interval. Figure 15 and Figure 16 show the trajectories
using MagSound and One-shot, respectively. We also draw the trajectories whose coordinates are computed by
solving geometric equations in Figure 17, which is denoted by Geo-one-shot. When there is no real solution for
the geometric equations, we take the last coordinate as the current coordinate.
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Fig. 16. Trajectories of One-shot
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Fig. 17. Trajectories of Geo-one-shot (pink pluses represent the point where Geo-one-shot has no real solution)

We can see that the trace by One-shot gets distorted and drift over time, while the trace by MagSound keeps
relatively stable. Meanwhile, using Geo-one-shot, the trajectories are similar to One-shot, but lose some sample
points. Particularly, using One-shot or Geo-one-shot, the last trace in the trajectories of rectangle or triangle is
partially below the x-axis, where the case that Geo-one-shot has no real solution happens. The proportion of this
case is 19.87% and 8.14% for rectangle and triangle, respectively. We label this case with a pink plus in Figure
17(a) and Figure 17(b). The results show that it is more robust to calculate coordinates in an optimization way
than solving systems of geometric equations when there is a significant clock offset.
In total, MagSound achieves 2D tracking error of 0.67 cm for rectangle, 0.38 cm for triangle, and 0.59 cm

for circle. The median tracking error between MagSound and One-shot is compared in Figure 18. MagSound
improves the accuracy by at least 27.19% to One-shot. Specifically, in Figure 19 we compare the performance of
each trace for the circle trajectories where the One-shot performs the best. As we draw more traces, the error of
One-shot increases while the error of MagSound even gets reduced. Since we collect the clock offset data for
function fitting at intervals, as time goes by, we would have more data to fit and achieve smaller fitting error.

5.2.3 Impact of Difference Devices. We use different earphones and smartphones to evaluate the impact of
different devices. As is shown in Figure 20, the smartphones are Google Pixel 4 (S1), Xiaomi Redmi K40 (S2) [20],
and Samsung S7 (S3) [17]. The wireless earphones are Samsung Galaxy Buds Pro (E1), Xiaomi Redmi Buds 3 (E2),
and another pair of Samsung Galaxy Buds Pro (E3). For experiments on S1-E3, we use the same pretrained neural
network model as S1-E1 to evaluate the device-to-device variation. The median error of MagSound is similar
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Fig. 21. 2D tracking error of different devices

for all device pairs, ranging from 0.54 cm to 0.98 cm. Figure 21 compares the tracking error between different
devices, and we observe that MagSound works well even for devices from different suppliers, e.g., Xiaomi K40
and Samsung Buds Pro (S2-E1). The performance of S1-E1 and S1-E3 is close to each other, which verifies that
the pretrained machine learning model is generic to devices of the same model.

5.2.4 Impact of Ambient Sound and Magnetic Interference. As is shown in Figure 22, we evaluate the impact
of ambient sound and magnetic interference on MagSound in seven scenarios. For ambient sound, we perform
evaluation in three different environments: laboratory (noise at 54.5 dBA), cafeteria (noise at 52.7 dBA), and
corridor (noise at 64.7 dBA). We measure the noise using a sound level meter. In the cafeteria, people eat snacks
and chat softly. In the corridor, people make footsteps and talk loudly. As is shown in Figure 23, the error
distribution of each environment is close to each other. The median error of the three cases are 0.67 cm, 0.45 cm,
and 0.88 cm. We attribute this result to the ZC sequence, which helps us distinguish transmitted signal and noise.
For magnetic interference, we perform evaluation in four different scenarios. Firstly, to test the hard iron

effect [1], we place a strong magnet at 15 cm from the smartphone, which is a common distance in magnet-based
sensing [9]. Secondly, to test the soft iron effect [54], we place three ferrite rods randomly around the smartphone,
and the nearest ferrite rod is 5 cm to the smartphone as in [64]. Thirdly, we place an electric fan under the
wooden table, directly below the smartphone, and keep the fan running during the experiment to test the impact
of electromagnetic interference since the electric fan is a typical home appliance driven by motors. The vertical
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distance between the top of the electric fan and the mobile phone is less than 10 cm. Finally, we perform the
evaluation on an iron metal table of an outdoor coffee shop. As is shown in Figure 24, the error distribution of
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each environment is close to each other. The median error of the four cases are 0.72 cm, 0.55 cm, 0.58 cm, and
0.79 cm, respectively. We observe that neither hard iron effects nor soft iron effects have a significant impact on
the accuracy. We attribute the robustness to hard iron effects to that we have removed the background magnetic
field before the model inference. Besides, we find that the range of electromagnetic interference for common
household appliances is limited within a few centimeters. Furthermore, the induced magnetic field strength
around soft iron is too weak to influence the smartphone. Although the iron metal table hinders the movement
of the earphone due to the mutual attraction of the two, we find that MagSound can still re-calibrate the tracking
and maintains millimeter-level accuracy.

5.2.5 Impact of Multipath. We evaluate the impact of multipath in three different cases. The first case is an
empty table, which corresponds to no environmental multipath. For static multipath, we place bags and books
10-15 cm away from the smartphone or the earphone to make a messy table. Further, we ask volunteers to walk
around the messy table at 50-70 cm to introduce dynamic multipath. The median error of the three cases are 0.53
cm, 0.54 cm, and 0.58 cm, respectively. The error distribution of each case is shown in Figure 25. We observe that
multipath does have an effect on the accuracy, especially for extreme errors. However, the error distribution of
MagSound is similar in the three cases, which verifies its robustness.

5.2.6 Impact of Duration in Effective Magnetic Area. We evaluate the impact of duration in effective magnetic
area from 1 second to 11 seconds in intervals of 2 seconds. We start timing when the earphone moves into the
area, and we remove the earphone from the area when the time is up. Note that when the duration is less than or
equal to 1 second, users only need to move in and out of the earphone, and the time is negligible. We plot the
median tracking error in Figure 26. We can see that the accuracy improves with more duration in the effective
magnetic area. This is because more duration means more clock offset data to fit. Besides, when the duration is
more than 7 seconds, the performance improvement becomes small, which means MagSound do not need too
long duration in the effective magnetic area.

5.2.7 Impact of Correction Interval. We evaluate the impact of correction interval from 40 seconds to 140 seconds
in intervals of 20 seconds. Figure 27 shows the median tracking error under different correction intervals. We can
see that the performance of MagSound exhibits a slow decline as the interval increases. Nevertheless, MagSound
maintains millimeter-level accuracy within an interval of 100 seconds, which is expected to meet the requirements
of applications such as drawing a fine-grained trajectory or inputting a few words. As discussed in Section 5.2.2,
when the number of re-calibration increases, the performance of MagSound is expected to be better.
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Fig. 29. Contrast of MagSound and touch screen based drawing (TS) on fine-grained drawing

5.3 Potential Applications
One of the potential applications of MagSound is fine-grained drawing on smart devices. Currently, many smart
devices, including smartphones and smartwatches, are not equipped with a stylus. However, when we try to
do fine-grained drawing on the touch screen, the fat finger problem [56] severely affects the painting accuracy.
When drawing on the touch screen, the drawing would get distorted due to the occlusion of the target by the
finger. Therefore, targets on the touch screen have a certain minimum size to be reliably selected by the finger.
According to [25, 26, 60], the value for this minimum target size varies from 1.05 cm to 2.60 cm depending on
different study conditions. Besides, in practice, users may divide the target trajectory, enlarge each part, and then
draw the trace in sequence. This solution does improve performance to some extent. However, frequent zoom-in
and zoom-out seriously affect the user experience, making the process laborious and disorienting to users [60].
Moreover, the drawing may break at the junction of each segment. What’s worse, the finger pitch and finger roll
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angles influence the sensing accuracy of the touch screen, too [27]. Meanwhile, MagSound avoids the fat finger
problem, as MagSound does not need the touch screen and has a larger sensing range.
To illustrate the fat finger problem, we recruit 16 volunteers to perform fine-grained drawing using the

Microsoft Whiteboard app [16] on a Google Pixel 4 smartphone. Figure 29(a) shows the drawing template of the
experiment. We first set the template picture the same size as the screen on the canvas, and then we ask the
user to draw according to the template. We call such a drawing method as Touch Screen based drawing (TS). We
collect the user’s paintings with and without zooming, respectively. For comparison, we also ask the user to draw
using MagSound, where the template is printed on an A4 paper. Figure 29(b), Figure 29(c), and Figure 29(d) show
the example results corresponding to the three methods.
Through the experiment, we observe that the details of the drawing using TS without zoom are severely

distorted. Moreover, when using TS with zoom, we observe evident breakage of the trajectory at the junction of
the adjacent parts. In contrast, the result of MagSound is the smoothest and is the closest to the template among
the three methods. After the experiment, we asked the volunteers “Do you prefer MagSound to TS?” with four
options: very prefer, prefer, neutral and TS is better. Figure 28 presents the feedback from participants. We can
see that 93.73% of the participants prefer or very prefer MagSound to TS. Most users express their complaints
about the fat finger problem of TS, and only one user holds the view that without considering the time cost, he
can draw better using TS with zoom.

Thus, compared with traditional touch screen based methods, MagSound has advantages on drawing accuracy.
Moreover, as the size of the template far exceeds the size of the touch screen of common smart devices, such as
smartphones and smartwatches, earphone tracking based interactions can push the limit of traditional touch
screen based interactions in a larger plane.

(a) Dolphin template (printed on an A4 paper)
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Fig. 30. Fine-grained drawing of a dolphin

To evaluate the re-calibration of MagSound, we show another complex drawing sample of a dolphin. We draw
the trace three times in total, and calibrate the earphone at intervals. As is shown in Figure 30, we can see that
the three traces by MagSound kept close to the original template, while those by One-shot become twisted.

The result shows that MagSound can track the earphone in a fine-grained manner and enable the smart devices
to perform applications such as fine-grained drawing. Further, we believe that the ability to track the complex
movements of the earphone will enable the earphone to be adapted for VR game interactions, e.g., controlling the
movement trajectory of a character. In fact, there have been some novel Mobile Motion Games (MMG), such as
SwordFight [74] and Big Stomach Challenge [33].
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5.4 Case Study of Handwriting Recognition
5.4.1 Setup. We also perform a case study on handwriting recognition. Compared with 2D tracking tasks,
handwriting recognition focuses more on the maintenance of relative shape rather than absolute distance. We
invite volunteers to write 26 uppercase letters using the earphone, each letter 16 times. In the scenario, the user
would choose the recognized word every time a word is written, and we can re-calibrate the tracking at the same
time. According to [5, 24], the average word length is 4 letters. Therefore, the tracking would be re-calibrated
every 4 letters in one run. We input the captured trace into the recognition interface developed by Google Input
Method Editors (IME) [23]. Google IME takes trajectory coordinates as input, and returns inferred letters. A letter
trajectory is recognized, if Google IME returns the corresponding ground truth. We use recognition accuracy as
the metric for evaluation. Given the same recognition interface, the accuracy of the input trajectory determines
the recognition accuracy.

5.4.2 Comparison with One-shot Linear Calibration. The proposed MagSound can improve the recognition
accuracy to One-shot significantly. In Figure 31, we compare the recognition accuracy of each letter between
MagSound and One-shot. We can see that the accuracy of MagSound is higher than or equal to One-shot on every
letter. However, the accuracy of letter ’Q’ is poor for both methods. As is shown in Figure 32, the trajectories
obtained by MagSound are actually easy to recognize. A possible reason is that the stroke order will affect the
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recognition of the IME. If the stroke order is different from the stroke order referenced by the IME, the error rate
will increase. In general, the average accuracy of MagSound and One-shot is 95.43% and 63.70%, respectively,
which means that MagSound brings an improvement of 49.81% to One-shot. We believe the improvements are
based on the time stability of MagSound. To illustrate, we plot the trend of accuracy across all letters over time in
Figure 35. We can see that the accuracy between MagSound and One-shot is close at the first 4 letters. Then, the
accuracy of One-shot decreases over time while MagSound keeps the accuracy at a high level due to re-calibration.
Further, we draw the trace of letter ’B’ in Figure 33. We observe that the trace under MagSound maintains the
relative shape, while the trace under One-shot get distorted since the tenth letter. Finally, we compare MagSound
and One-shot on a real handwriting sentence in Figure 34. We can see that the trace of MagSound keep stable,
while the trace of One-shot gets distorted. The results shed light on the potential of MagSound to enable HCI
applications such as handwriting input.

5.4.3 Impact of Writing Habit. To evaluate the impact of different writing habits, we invite 6 volunteers to write
uppercase letters using MagSound. Each volunteer writes 16 times in one run for each letter, and the tracking gets
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Table 3. Processing delay of each component

Component Delay (ms)

Magnetic coordinate 1.64
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Other 0.19
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Fig. 37. Audibility to users

re-calibrated every four times. Consequently, we collect a total of 2496 letters from different users for evaluation.
Figure 36 compares the accuracy of each volunteer on each letter. We observe that the curves are similar, which
verifies the robustness of MagSound across different users.

5.5 System Performance and User Study
In MagSound, the average signal processing latency per frame is 13.48 ms. Since the frame length is 40 ms, the
relatively low latency enables MagSound to run in real time. In Table 3, we draw the delay of each component in
MagSound. We can see that the component of acoustic coordinate costs the most time, which is mainly caused by
the padding and demodulation of the ZC sequence. Furthermore, the low latency of the calibration and fusion
components validates the low computational cost of the optimization.

Finally, we invite 18 volunteers from age 22 to 47 to test the audibility of MagSound on different devices. The
earphone transmits signals for 40-50 cm to the user, which follows the common usage of earphone tracking. We
set four noise levels from low to high, including feels nothing, heard something but like normal noise, a bit noisy
but tolerable and totally intolerable. As is shown in Figure 37, we find that none of the users feels intolerable
to the acoustic signal transmitted by MagSound, and most volunteers feels nothing or can not distinguish the
transmitted signal from ambient noise. The result is consistent with our preliminary study in Section 3.2.1.
Therefore, the acoustic signal transmitted in MagSound would not disturb people’s daily life. We attribute the
result to the weak frequency response of wireless earphones.

6 DISCUSSION

6.1 Receiving Acoustic Signal Using Microphones in Wireless Earphones
Wireless earphones nowadays are usually equipped with microphones for telephone calls. Since the speaker
on wireless earphones transmits weak signals, we also studied the possibility to take the smartphone as the
transmitter and the earphone as the receiver. Nevertheless, we find that the built-in microphones on most COTS
wireless earphones can only support sound signals with a frequency below 10 kHz [45]. One possible reason
is that an upper limit of 10 kHz is enough for the designed applications, such telephone call or active noise
cancellation. To transmit higher frequency signals, we choose the earphone as the transmitter and the smartphone
as the receiver.
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6.2 Splitting Strokes
For applications such as handwriting input, it is important to divide a writing trace into several strokes. We
note that most wireless earphones have programmable buttons reserved for volume control or song switch. It is
convenient for users to mark the beginning or end of a stroke by touching the button. However, the challenge is
that users may touch the button by accident when holding the earphone. We leave this as future work to advance
the prototype into practical application.

6.3 3D Earphone Tracking on COTS Smart Devices
Most of the COTS smart devices, such as smartphones and smartwatches, have one or two microphones, which
means that we have at most two equations that we can use to determine the coordinates of the earphone. Thus,
we evaluate the performance of MagSound mainly in the 2D tracking scenario. However, with the development
of technology, when the microphones of smart devices are expanded to equal or more than three, the system can
be easily adapted to the 3D tracking scenario in a manner similar to what we discussed in Section 4.3.3. Without
loss of generality, supposing that we have three microphones on a smart device, we would have a system of three
geometric equations: 

𝑑𝑖𝑠𝑡
(
𝑷 , 𝑷 1) = 𝑑1

𝑑𝑖𝑠𝑡
(
𝑷 , 𝑷 2) = 𝑑2

𝑑𝑖𝑠𝑡
(
𝑷 , 𝑷 3) = 𝑑3

, (17)

where the symbols share the same meaning as those in Section 4.3.3. To solve the earphone coordinate 𝑷 , the
objective function to optimize become

min
𝑷

{(
𝑑𝑖𝑠𝑡

(
𝑷 , 𝑷 1) − 𝑑1

)2 +
(
𝑑𝑖𝑠𝑡

(
𝑷 , 𝑷 2) − 𝑑2

)2 +
(
𝑑𝑖𝑠𝑡

(
𝑷 , 𝑷 3) − 𝑑3

)2
}
. (18)

By optimizing the objective function, we would obtain the 3D coordinate of the earphone. If we have more than
three microphones, we can also utilize the extra microphones to improve the robustness to tracking failure [62].

Since the magnetometer in smart devices collects data from the three axes of 𝑥 , 𝑦, and 𝑧, there have been some
existing works [30, 69] that track a magnet in 3D space using the built-in magnetometer in COTS smart devices.
Thus, 3D earphone tracking based on magnetic field strength still works in MagSound, which enables users to
re-calibrate 3D acoustic signal based tracking. Nevertheless, a practical challenge is that collecting magnetic
field strength fingerprints in a 3D space is more difficult than in a 2D plane. One possible solution is to employ
off-the-shelf robots, e.g., Makerbot [72], to place the earphone in a 3D space precisely.

6.4 Limitations
For some devices, such as AirPods Pro, we observe that its clock drift function changes rapidly, yielding 1D
tracking error of meter-level in 240 seconds using one-shot calibration. We also find that Bluetooth Codecs
may cause errors due to audio compression. Although MagSound can reduce the error into centimeter-level
for AirPods Pro, the tracking system have to get re-calibrated frequently. Besides, due to the weak frequency
response, the sensing range of earphone based tracking is limited to one meter. However, we argue that the
sensing range is enough for potential applications.

7 CONCLUSION
In this paper, we present MagSound, which can re-calibrate wireless earphone tracking in one run without
modified or specified hardware. Based on the analysis of the unique characteristics of earphones, we perform
integrated magnetic and acoustic sensing and design a robust signal model for earphone sensing. The proposed
MagSound combines the advantages of both magnetic sensing and acoustic sensing to address challenges such
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as clock offset and low SNR in earphone tracking. We implement a prototype of MagSound and evaluate the
system in applications such as 2D tracking and handwriting recognition. Comprehensive experiments manifest
that MagSound can maintain the tracking accuracy at millimeter-level over time, and achieve 95.43% accuracy in
handwriting recognition. We believe that MagSound can propel the wireless earphone into a pervasive acoustic
sensing platform.
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