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ABSTRACT
Complex event recognition (CER) refers to identifying specific pat-
terns composed of several primitive events in event stores. Since
full-scanning event stores to identify primitive events holding query
constraint conditions will incur costly I/O overhead, a mainstream
and practical approach is using index techniques to obtain these
events. However, prior index-based approaches suffer from signif-
icant I/O and sorting overhead when dealing with high predicate
selectivity or long query window (common in real-world applica-
tions), which leads to high query latency. To address this issue,
we propose ACER, a Range Bitmap-based index, to accelerate CER.
Firstly, ACER achieves a low index space overhead by grouping the
events with the same type into a cluster and compressing the clus-
ter data, alleviating the I/O overhead of reading indexes. Secondly,
ACER builds Range Bitmaps in batch (block) for queried attributes
and ensures that the events of each cluster in the index block are
chronologically ordered. Then, ACER can always obtain ordered
query results for a specific event type through merge operations,
avoiding sorting overhead. Most importantly, ACER avoids unnec-
essary disk access in indexes and events via two-phase filtering
based on the window condition, thus alleviating the I/O overhead
further. Our experiments on six real-world and synthetic datasets
demonstrate that ACER reduces the query latency by up to one
order of magnitude compared with SOTA techniques.
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1 INTRODUCTION
Complex event recognition (CER) refers to identifying specific pat-
terns composed of several primitive events in event stores. It is
widely employed in event pattern mining applications like cluster
monitoring [27, 47, 52], network intrusion detection [9, 15, 50], and
financial services [21, 24, 45]. Notably, in 2016, the International
Organization for Standardization issued new semantics in SQL to
support CER [25].Meanwhile, prominent database and data-stream
systems, including Oracle, Snowflake, and Flink have already im-
plemented CER interfaces [19, 38, 46]. To better understand CER,
we give the following example.

Example. In the stock trade market, an investor identifies an
unusual trading pattern involving two positively correlated stocks,
GOOG and MSFT, as shown in Table 1. This pattern is characterized
by a first increase inMSFT’s opening price, and then GOOG’s opening
price decreases. Then, the investor submits query𝑄1 (shown in Figure
1) to event stores to retrieve the historical frequency of this pattern. If
the pattern is infrequent, it may suggest a potential future scenario
where either the opening price of GOOG will rise or that of MSFT will
fall. Based on this insight, the investor can make strategic decisions
to buy or sell stocks, aiming for maximum returns.

Table 1: Trade events in NASDAQ.
Ticker (stock name) Open Volume Date (timestamp)

𝑒1 MSFT 329.67 60906 2023/05/26 10:55
𝑒2 AAPL 175.29 100686 2023/05/26 10:56
𝑒3 GOOG 125.55 82648 2023/05/26 10:57
𝑒4 AAPL 175.37 61517 2023/05/26 10:58
𝑒5 MSFT 330.85 109612 2023/05/26 11:03
𝑒6 GOOG 125.16 37939 2023/05/26 11:06
𝑒7 GOOG 125.00 43324 2023/05/26 11:23
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PATTERN SEQ(MSFT v1, GOOG v2, MSFT v3, GOOG v4)
FROM NASDAQ
USE skip-till-next-match
WHERE 326 <= v1.open <= 334 AND 120 <= v2.open <= 130 AND

v3.open >= v1.open * 1.003 AND v4.open <= v2.open * 0.997 
WITHIN 12 minutes
RETURN COUNT(*)

*

Figure 1:Query statement 𝑄1.
In Figure 1, PATTERN clauses depict the detected event pattern,

and the keyword SEQ is a temporal operator that indicates the se-
quential occurrence relationship; FROM clauses denote the queried
event set; USE clauses specify the selection strategy, i.e., the skip-till-
next-match strategy, which allows skipping the irrelevant events un-
til finding the event canmatch previous results;WHERE clauses give
a predicate condition set;WITHIN clauses specify the maximum dis-
tance between the first and last event in the pattern, and RETURN
clauses give the target output.
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Figure 2: Fullscan-based vs. Index-based methods.
Traditional CER matching mechanisms can be mainly catego-

rized into two types: fullscan-based [3, 14, 23, 52] and index-based
[32], as shown in Figure 2: (1) Fullscan-based methods retrieve all
events from event stores and feed them into evaluation engines
(e.g., Join Tree [36] and Non-deterministic Finite Automata (NFA)
[14]) for matching. However, they suffer from high latency due
to costly disk I/O overhead and the engines’ filtering overhead.
Although several works [8, 55] attempt to pre-filtering irrelevant
events before sending events to the engines, the issue of costly disk
I/O overhead persists, and the query latency still remains at a high
level; (2) Index-based methods [32] utilize index techniques to al-
leviate the I/O overhead in reading events. They construct B+Tree
indexes for event attributes (the events stored in the indexes may
no longer be chronologically ordered) and greedily choose a part
of query conditions with low selectivity to query events. Note that
additional sort operations are necessary to ensure ordered events.
However, accessing indexes and sorting events incur costly I/O
and sorting overhead, especially for queries with high predicate se-
lectivity or long query window. Consequently, prior index-based
methods also suffer from high latency and may not be suitable for
time-sensitive scenarios [26].

To help readers understand the execution process of the prior
index-based methods, we present the following example.

Example. Figure 3 illustrates the execution plan of the prior index-
based method [32] for query 𝑄1 (three B+Tree indexes has been con-
structed for ticker, open, and date columns). The method greedily
selects the condition with minimum selectivity from the type condi-
tion and independent predicate condition (IPC) set (here the depen-
dent predicate condition set is processed by the evaluation engines).
Then, it uses the indexes to query these conditions. If the current condi-
tion can reduce the overall cost, it is selected. Otherwise, it is skipped,
and no further conditions are selected. In our example, conditions
326<=v1.open<=334 and v4.ticker='GOOG' are selected (prefer-
ring v4 rather than v2 because v4 will generate shorter replay inter-
vals). Then, the method sorts the results, performs a join operation to

create the replay intervals that potentially contain matched tuples,
and queries the index of date column to find these events whose
timestamps are within these replay intervals. Finally, the method
sends these events to the evaluation engines for matching. We pro-
vide a detailed matching process of Join Tree evaluation engine for
interested readers in Appendix A.

v1.open between 326 and 334 

v1.date <= v4.date
v4.date – v1.date <= 12 mins
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Figure 3: Execution plan of prior index-based methods.
To further give insight into the factors leading to high query la-

tency in fullscan-based and index-based methods, we conduct ex-
periments to estimate the query cost. Typically, the query cost can
be mainly split into filtering, reading, and matching cost. Filtering
cost refers to the expense of pre-filtering irrelevant events, read-
ing cost mainly involves retrieving events from disk, and match-
ing cost denotes the expense of matching in evaluation engines.
Then, we use two queries, 𝑄1 and 𝑄2 (𝑄2 is shown in Appendix
B, which has higher predicate selectivity and a longer query win-
dow), to evaluate the cost of these methods on NASDAQ dataset.
The results are shown in Figure 4. Here, FullScan and IntervalScan
represent the state-of-the-art fullscan-based [55] and index-based
methods [32], respectively. ACER represents our solution.
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Figure 4: Cost breakdown of 𝑄1 and 𝑄2 on NASDAQ dataset.

Although IntervalScan has lower query latency than FullScan, it
incurs significant filtering cost due to the extra overhead in index
access and result sorting. Besides, it still has a high reading cost
on query 𝑄2 because it greedily selects the conditions with min-
imal selectivity to generate the best execution plan, which may
result in querying partial conditions. Once several conditions are
not used to filter, the events obtained from IntervalScan have a
high likelihood that they cannot participate in matching. In con-
clusion, in designing index structures to lower the query latency
of CER, we face three primary challenges: (1) alleviating the I/O
overhead of reading indexes; (2) ensuring chronologically or-
dered query results without sorting; and (3) avoiding unnec-
essary disk access in indexes and events.

We propose ACER, a Range Bitmap-based index, to address the
three challenges. To address the first challenge, ACER organizes
event attributes by column and groups events of the same type
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into a cluster. Then, we only need to store type information once
per cluster, which reduces storage redundancy. Due to storage by
column, ACER can effectively compress the index size, thus allevi-
ating I/O access overhead in indexes.

To address the second challenge, ACER constructs Range Bitmaps
indexing event attributes in batch (block) and ensures that the cor-
responding events in each cluster are chronologically ordered. Since
the output order of the bitmap is aligned with the construction or-
der, ACER generates ordered query results for a specific event type
by sequentially merging the query results of each index block, thus
avoiding sorting overhead. Notably, directly using original Range
Bitmaps [10] cannot ensure ordered query results without sorting
when encountering out-of-order insertion and storage caused by
network congestion.

Lastly, to address the third challenge, ACER queries all IPCs
and type conditions because of its low index query cost. Most im-
portantly, a two-phase filtering algorithm in ACER is proposed to
avoid unnecessary disk access in indexes and events based on the
window condition. The key intuition of the filtering algorithm is
that: (1) if an index block’s time range cannot overlap with the re-
play intervals, it can be skipped accessing as it cannot contain any
matched tuples; (2) for the events whose timestamps are within
a replay interval, if none satisfy a variable’s type condition and
IPCs, then these events cannot be combined into matched tuples,
thus we can skip accessing them.

Overall, our key contributions are summarized as follows:
• We propose an index structure named ACER to accelerate
CER. It achieves a low storage overhead by eliminating redun-
dant type information and compressing index blocks. Besides,
it can obtain chronologically ordered events that hold query
constraint conditions without sorting.
• We propose a two-phase filtering algorithm that is aware of
the query window condition to filter, effectively avoiding un-
necessary disk access in indexes and events.
• We conduct extensive experiments to verify the performance
of ACER. The experimental results show that: (1) ACER only
needs around 25% storage overhead of prior index-basedmeth-
ods, which alleviates the costly I/O overhead of reading in-
dexes; and (2) ACER reduces the query latency by up to one
order of magnitude compared with SOTA techniques.

2 PRELIMINARIES
In this section, we first present the complex event query template
we support, and then introduce a data structure, i.e., bitmap used
in our solution.

2.1 Complex EventQuery Template
Listing 1 shows the complex event query template we support (the
template is the SASE-like query style [36]). Next, we define these
query components in the template sequentially.

1 PATTERN event_pattern
2 FROM event_set
3 USE selection_strategy
4 WHERE predicate_condition_set
5 WITHIN query_window
6 RETURN expected_output

Listing 1: Complex event query template.

Definition 1. An event pattern provides the temporal sequen-
tial relationship of multiple primitive events. Its representation gram-
mar is as follows:
(i) S -> PatternExpr
(ii) PatternExpr -> SEQ(PatternExpr, PatternExpr)
(iii) PatternExpr -> AND(PatternExpr, PatternExpr)
(iv) PatternExpr -> OR(PatternExpr, PatternExpr)
(v) PatternExpr -> PatternExpr, PatternExpr
(vi) PatternExpr -> typeCondition variableName

where SEQ, AND, and OR are temporal operators. SEQ operator indi-
cates multiple events occurring chronologically. AND operator indi-
cates all events must occur, regardless of event occurrence order. OR
operator indicates at least one event occurring amongmultiple events.

Intuitively, for an event pattern with OR operator, we can decom-
pose it to multiple event patterns without OR operator [4, 5, 55].
Additionally, for queries that contain other special operators such
as Kleene and negation operator [36], to the best of our knowledge,
they can be transformed into queries containing only SEQ and AND
operators for filtering [24]. Thus, for convenience, the queries dis-
cussed in this paper only contain SEQ and AND operators.

Definition 2. An event set is composed of 𝑁 primitive events,
each sharing a schema defined as (𝑇𝑦𝑝𝑒,𝐴𝑡𝑡𝑟1, ..., 𝐴𝑡𝑡𝑟𝑑 ,𝑇𝑠), where
𝑇𝑦𝑝𝑒 specifies the type of an event,𝐴𝑡𝑡𝑟 𝑖 is the 𝑖-th attribute of events,
and𝑇𝑠 refers to an event occurrence timestamp. Besides, the events in
this set are chronologically ordered, e.g., 𝑒𝑖 .𝑇𝑠 ≤ 𝑒 𝑗 .𝑇𝑠 for any 𝑖 < 𝑗 ,
where 𝑒𝑖 .𝑇𝑠 denotes the timestamp of event 𝑒𝑖 .

Definition 3. A predicate condition set is composed of inde-
pendent and dependent predicate conditions. Here, the independent
predicate condition (IPC) [55] is a boolean expression that binds a
single variable 𝑣𝑖 , specifying the attribute value property of the event.
The dependent predicate condition (DPC) [55] is a boolean expression
that binds two variables 𝑣𝑖 and 𝑣 𝑗 , specifying the attribute value re-
lationship between the events.

Definition 4. A selection strategy specifies how evaluation en-
gines select events tomatch the event pattern. Commonly, threematch
strategies are available: strict-contiguous, skip-till-next-match, and
skip-till-any-match [22, 52]. The first selection strategy requires that
the events matching the pattern must occur in direct succession. The
second selection strategy allows the engines to skip irrelevant events
until they find the event that matches previous results. The third se-
lection strategy allows the engines to skip any events, regardless of
whether they can potentially match the previous results.

Due to the last two selection strategies have fewer matching re-
strictions and are more robust, they are extensively applied in di-
verse scenarios [5, 6, 11, 43, 54]. Thus, this paper mainly addresses
the queries using the last two selection strategies.

Definition 5. A query window defines the maximum distance
between the first and last event in the event pattern.

There are two types of query windows: count-based and time-
based (their detailed introduction can be seen in [6]). This paper
only discusses the predominant time-based query windows due to
space limitations. Notably, extending our index structures to sup-
port count-based query windows is easy because it is a special case
of the time-based when the event arrival rate is fixed.

 

1935



KDD ’24, August 25–29, 2024, Barcelona, Spain. Shizhe Liu et al.

Definition 6. An expected output refers to a specific result for-
mat that the user expects the evaluation engines to produce, e.g., the
entire matched results or the number of matched results.

2.2 Bitmap Structures
Here we introduce the basic concepts of bitmaps and then focus
on a special type called Range Bitmap adopted in our work.

Essentially, a bitmap is a binary array that can represent an in-
teger set. For example, given two sets 𝑆1 = {0, 1, 3, 7} and 𝑆2 =
{3, 6, 7}, the bitmaps of two sets are represented as 10001011 and
11001000. Using bitwise operations (e.g., AND and OR), we can ob-
tain the intersection result 10001000 and union result 11001011
between two bitmaps. Then, by sequentially reading the bit value
from bitmaps, we finally obtain the intersection result {3, 7} and
union result {0, 1, 3, 6, 7} of two sets. Note that the set we obtain
from the bitmap always keeps order.

To enable bitmap structures to support efficient range query,
Chan and Ioannidis [10] proposed the Base-2 Bit Sliced Range En-
coded Bitmap (Range Bitmap for short). Figure 5 shows a constructed
Range Bitmap for a given item set of {7, 1, 5, 0, 4, 5, 2, 1}. This Range
Bitmap has three sliced bitmaps, and the values stored in each row
of the Range Bitmap are the inverse code of the input values (con-
struction details can be seen in [18]).

To identify locations where the item value is no greater than a
query threshold, Range Bitmap first creates an initial bitmap 𝑠𝑡𝑎𝑡𝑒 ,
with all bit values set to 1. Next, it converts the threshold into bi-
nary, denoted as 𝑡 . For the 𝑖-th bit value 𝑣 in 𝑡 , if 𝑣 is equal to 1, an
OR operation is performed on 𝑠𝑡𝑎𝑡𝑒 and the 𝑖-th slice bitmap, and
the result is updated to 𝑠𝑡𝑎𝑡𝑒 . Otherwise, an AND operation is per-
formed on 𝑠𝑡𝑎𝑡𝑒 and the 𝑖-th slice bitmap, and the result is updated
to 𝑠𝑡𝑎𝑡𝑒 . By performing the OR/AND operation from the lowest bit
to the highest bit of 𝑡 , we obtain a bitmap indicating which loca-
tions have item values not greater than the query threshold. An
example of finding positions with item values no greater than 4
in the above constructed Range Bitmap is shown in Figure 5. No-
tably, Range Bitmap can be extended to support other inequality
constraint queries by negation or intersection operation.
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Figure 5: Construction and query of Range Bitmap.

When processingmultiple IPCs for a given variable, Range Bitmap
can use bitwise operations to return query results quickly. How-
ever, even if the IPC selectivity is low, Range Bitmap always needs

to access all bits to determine which values satisfy the IPC, which
may lead to unnecessary access in indexes. In Section 3.3, we avoid
this drawback via a two-phase filtering algorithm.

3 DESIGN OF ACER
In this section, we first provide the ACER structure overview.Then,
we introduce the insertion and query processes of ACER. Finally,
we propose two optimization techniques to enhance the query per-
formance of ACER.

3.1 ACER Structure Overview
ACER structure is illustrated in Figure 6. It mainly contains four
components: Page, Buffer Pool, Index Block, and Synopsis Table.
Remarkably, ACER cannot support indexing floating-point (FP) or
string values. Fortunately, we can solve this problem by (1) scal-
ing FP numbers to integers by multiplying by 10 to the power of
𝑠 , where 𝑠 is the maximum number of decimal places of these FP
numbers; (2) using a string dictionary to encode string data into in-
tegers. Next, we introduce the components of ACER sequentially.
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Figure 6: Structure overview and insertion example (onNAS-
DAQ dataset) of ACER.

Page stores the entire event information persistently in row for-
mat.When an event arrives, we store it on the disk page and return
the physical record identifier (RID) of this event1.

Buffer Pool temporarily holds events awaiting indexing. It has
a limited capacity and housesmultiple buffers, each ofwhich stores
a part of event information such as timestamps, RIDs, and attribute
values. Events within a single buffer have the same event type.
When the Buffer Pool is full, each buffer will sort data based on
timestamp, transfer data to an Index Block, update the Synopsis
Table, and finally clear its content.

Index Block includes several Range Bitmaps [10] (RB for short)
for indexing event attributes, a timestamp list (Ts List for short),
and an RID list. Here, if 𝑖-th position in the RID list in an Index
Block points to event 𝑒𝑠𝑖 , then 𝑖-th position in the Ts list represents
𝑒𝑠𝑖 .𝑇𝑠 . For 𝑗-th Range Bitmap, 𝑖-th position in this Range Bitmap
1Here the physical record identifier (RID) represents the physical storage location
information. RID is a composite of page number and offset position.
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stores the inverse code of the corresponding attribute value for the
event 𝑒𝑠𝑖 . Besides, in each Index Block, events of the same type are
grouped in a continuous segment termed a cluster.

Synopsis Table (ST for short) logs synopsis information for
each cluster across different Index Blocks. The cluster synopsis
information includes Index Block ID, attribute’s maximum/mini-
mum values (note that range filters [28, 34, 48] can replace maxi-
mum/minimumvalues to obtain better filtering performance), time
range, and storage region. The time range records this cluster’s
minimum and maximum event occurrence timestamp.The storage
region records the position range of event storage in this cluster.

3.2 Insertion
When an event arrives, we store it on the Page and obtain its RID.
Next, we extract the event’s type, timestamp, and indexed attribute
values, appending them to the corresponding buffer. Once the in-
sertion process is complete, we check whether the Buffer Pool has
reached its capacity. If yes, we flush the data in each buffer to a
new cluster of the Index Block. When a buffer finishes the flush
operation, we generate a synopsis for the newly generated cluster,
add this synopsis information to the Synopsis Table, and clear the
buffer. After flushing all buffers, we serialize the Index Block and
write it to disk. If the Buffer Pool is not full or the Index Block
has been written to disk, we return “true” to indicate a successful
insertion. We omit the insertion algorithm to save space.

Example. Figure 6 shows a running insertion example. When an
event 𝑒 = (‘MSFT’, 329.67, 60906, 1685069700) arrives, ACER stores
it on the 8-th page and returns the RID, denoted by 𝑟𝑖𝑑 = (8, 504).
Then, ACER inserts 𝑟𝑖𝑑 , attribute values, and the timestamp of event
𝑒 into the buffer ‘MSFT’. At this time, the Buffer Pool reaches its ca-
pacity. Thus, ACER begins flushing the data of the buffer one by one
to a new cluster of the Index Block, ensuring that events within a
cluster are chronologically ordered. In our example, the buffer ‘MSFT’
is the second buffer to be flushed into the 4-th Index Block, and the
flushed region is denoted by 𝐶𝑙𝑢𝑠𝑡𝑒𝑟4𝑀𝑆𝐹𝑇 . After flushing the buffer
‘MSFT’, ACER generates a synopsis 𝑆𝑦𝑛𝑜𝑝𝑠𝑖𝑠4𝑀𝑆𝐹𝑇 for the cluster, in-
serts it into the Synopsis Table, and clears the buffer. When flushing
all buffers, ACER begins to construct two Range Bitmaps, denoted by
𝑅𝐵1 and 𝑅𝐵2, for the first and second attribute value lists. Finally,
ACER serializes the 4-th Index Block to disk and returns “true”.

3.3 Query
Due to the complex event query process of ACER is based on indi-
vidual variables, we first introduce how ACER queries the events
that satisfy a single variable’s type condition and IPCs (the DPCs
are processed by evaluation engines).Then,we introduce howACER
processes complex event queries.

Before introducing, we give some structure declarations shown
in Figure 7. RidTimePair is composed of the timestamp and RID of
an event, which is used as an intermediate query result of a single
variable (the reason why we do not directly use RID as the query
result is we need timestamp to filter further). IPC defines an inde-
pendent predicate condition (we have equivalently converted float-
point or string values to long values). ReplayIntervalSet (RIS
for short) denotes a set containing several replay intervals,

each defined as a time segment starting and ending at spe-
cific timestamps. Note that RIS is ordered, and it includes several
functions, e.g., checkOverlap, coveringUpdate, and pairFiltering.
We will explain the functionality of these functions later.

struct RidTimePair{
RID rid;
long timestamp;

}; 

struct ReplayIntervalSet{
long[ ] startTsList;
long[ ] endTsList;

};

struct IPC{
String attrName;
long minVal;
long maxVal;

};

Figure 7: Structure declarations.
Process of a single variable query.Assume that the event pat-

tern of a given query contains 𝜉 variables 𝑣1, ..., 𝑣𝜉 . We use Θ𝐼𝑃𝐶
𝑖

to represent the set of IPC bound to variable 𝑣𝑖 . Algorithm 1 illus-
trates the process of a single variable query.

Algorithm 1: Process of a single variable query
Input: Variable 𝑣𝑖 and the IPC set Θ𝐼𝑃𝐶

𝑖 bound to it.
Output: RidTimePair set 𝑝𝑎𝑖𝑟𝑠 that satisfies the type condition

and IPCs bound to the variable 𝑣𝑖 .
1 String 𝑡𝑦𝑝𝑒 ← the event type bound to the variable 𝑣𝑖 ;
2 int [] 𝑏𝑙𝑜𝑐𝑘𝐼𝐷𝑠 ← ST.getAllBlockIds(type, Θ𝐼𝑃𝐶

𝑖 );
3 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ← ST.getAllStorageRegion(type, Θ𝐼𝑃𝐶

𝑖 );
4 𝑅𝑖𝑑𝑇𝑖𝑚𝑒𝑃𝑎𝑖𝑟 [ ] 𝑝𝑎𝑖𝑟𝑠 ;
5 for j in range(blockIDs.length) do
6 𝑖𝑑 = 𝑏𝑙𝑜𝑐𝑘𝐼𝐷𝑠 [ 𝑗 ];
7 IndexBlock 𝑖𝑏 ← obtain the specified Index Block based on 𝑖𝑑 ;
8 𝑟𝑒𝑔𝑖𝑜𝑛𝐵𝑖𝑡𝑚𝑎𝑝 ← create a region bitmap based on 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 [𝑖 ];
9 𝐵𝑖𝑡𝑚𝑎𝑝 𝑎𝑛𝑠𝐵𝑖𝑡𝑚𝑎𝑝 = 𝑟𝑒𝑔𝑖𝑜𝑛𝐵𝑖𝑡𝑚𝑎𝑝 ;

10 foreach ipc in Θ𝑖
𝐼𝑃𝐶 do

11 RangeBitmap 𝑟𝑏 ← obtain the attribute Range Bitmap
from the Index Block ib based on 𝑖𝑝𝑐.𝑎𝑡𝑡𝑟𝑁𝑎𝑚𝑒 ;

12 𝑏𝑚𝑝 = 𝑟𝑏.𝑟𝑎𝑛𝑔𝑒𝑄𝑢𝑒𝑟𝑦 (𝑖𝑝𝑐.𝑚𝑖𝑛𝑉𝑎𝑙, 𝑖𝑝𝑐.𝑚𝑎𝑥𝑉𝑎𝑙 ) ;
13 𝑎𝑛𝑠𝐵𝑖𝑡𝑚𝑎𝑝 = 𝑎𝑛𝑠𝐵𝑖𝑡𝑚𝑎𝑝 & 𝑏𝑚𝑝 ;
14 𝑐𝑢𝑟𝑅𝑖𝑑𝑇𝑖𝑚𝑒𝑃𝑎𝑖𝑟𝑠 ← find RID and timestamp pairs of

corresponding positions from Ts list and RID list of Index
Block 𝑖𝑏 using bitmap 𝑎𝑛𝑠𝐵𝑖𝑡𝑚𝑎𝑝 ; ⊲ query an Index Block

15 Merge 𝑐𝑢𝑟𝑅𝑖𝑑𝑇𝑖𝑚𝑒𝑃𝑎𝑖𝑟𝑠 to 𝑝𝑎𝑖𝑟𝑠 ;
16 bufferPairs← accesss BufferPool[type] to find events that satisfy

Θ𝐼𝑃𝐶
𝑖 , and return ordered RidTimePair results; ⊲ query buffer

17 Merge bufferPairs to 𝑝𝑎𝑖𝑟𝑠 ;
18 return 𝑝𝑎𝑖𝑟𝑠 .

To retrieve the RidTimePair set that satisfies the type condition
and IPCs bound to a variable 𝑣𝑖 , we first obtain the event type asso-
ciated with this variable (Line 1). Next, we access the ST, find the
Index Blocks that contain this event type andwhose attribute value
ranges overlap with all IPCs, and return their IDs (Line 2). Simi-
larly, we get the storage region of each Index Block corresponding
to the event type from the ST (Line 3). Then, we access the Index
Blocks from the disk according to Index Block IDs, identify the
events that satisfy IPCs, and merge them into the final result set
(Line 5-15). Since the Buffer Pool also holds the events, we still
need to find the events that satisfy the IPCs from the correspond-
ing buffer and merge them into the final result set (Line 16-17). Fi-
nally, we return the final result set (Line 18). Note that the events
of the same type in each Index Block are chronologically ordered.
ACER can produce the ordered results by merging instead of sort-
ing, thereby reducing the sorting overhead.
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Process of complex event queries.Wefirst give a pruning ob-
servation in matching, and then we propose a window-aware fil-
tering via two-phase filtering algorithm to process a given query.

Empirically, for an event 𝑒 𝑗 that satisfies the type condition and
IPCs of variable 𝑣𝑖 , if it involves a final matched tuple, then other
events in this matched tuple must occur in the following replay
interval (denoted by 𝛿):

𝛿 =


[
𝑒 𝑗 .𝑇𝑠, 𝑒 𝑗 .𝑇𝑠+𝑤

]
, 𝑣𝑖 is the head variable,[

𝑒 𝑗 .𝑇𝑠−𝑤, 𝑒 𝑗 .𝑇𝑠
]
, 𝑣𝑖 is the tail variable,[

𝑒 𝑗 .𝑇𝑠−𝑤, 𝑒 𝑗 .𝑇𝑠+𝑤
]
, otherwise,

(1)

where𝑤 denotes the query window, the head variable denotes the
event corresponding to this variable always is the first event in
matched tuples, and the tail variable denotes the event correspond-
ing to this variable always is the last event in matched tuples.Then,
we have the following pruning observation:

ObseRvation 1. Given a query without the OR operator, for the
events whose timestamps are within a replay interval, if none of them
can satisfy a variable’s type condition and IPCs (events cannot be
reused), then this replay interval does not contain anymatched tuples
for this query.

Inspired by Observation 1, we propose a two-phase filtering al-
gorithm to avoid unnecessary disk access in indexes and events.
Intuitively, (1) after obtaining the RIDTimePair results of the first
queried variable, we can generate a replay interval set RIS based
on the results. Then, if an Index Block’s time range cannot overlap
with RIS, it can be skipped accessing as it cannot contain matched
tuples; and (2) after obtaining the query results of all variables,
we can utilize Observation 1 to remove irrelevant replay intervals
from RIS. Then, before querying related events from a disk, we fil-
ter these events whose timestamps are not within RIS, which ef-
fectively avoids accessing irrelevant events from the disk. Thus,
ACER achieves window-aware filtering because it utilizes the win-
dow condition to avoid unnecessary access in indexes and events.

Algorithm 2 illustrates the query procedure of ACER. Before
starting the first-phase filtering (Line 4-14), we first estimate the
overall selectivity of each variable (Line 1) and sort them accord-
ing to selectivity (Line 2). Subsequently, we query the RidTime-
Pair results of the variable with minimum overall selectivity and
store the results in a map structure (Line 4-6). Then, we generate
the replay interval set RIS (Line 7) based on Equation 1. Next, we
query the RidTimePair results of other variables that satisfy the
corresponding conditions (Line 8-14). To avoid unnecessary index
access, we verify whether an Index Block’s time region overlaps
with RIS (Line 10-11). If yes, the Index Blockmay contain the events
participating in matching, and other variables need to query the In-
dex Block. Otherwise, other variables can skip accessing the Index
Block.The checkOverlap function achieves the overlap check and
returns a boolean list to mark these Index Blocks that cannot be
skipped. Finally, we access corresponding Index Blocks according
to the boolean list to obtain the query results and put the results
into the map structure (Line 12-14).

In the second-phase filtering (Line 15-22), we first verifywhether
each replay interval in 𝑅𝐼𝑆 may contain the matched tuples ac-
cording to Observation 1. If a replay interval does not contain any
matched tuples, we can remove it from 𝑅𝐼𝑆 . The removal process

Algorithm 2: Process of complex event query in ACER
Input: A complex event query without OR operator.
Output:Matched tuples.

1 Estimate the overall selectivity of each variable in the query;
2 𝑣𝑠1 , ..., 𝑣𝑠𝜉 ← sort all variables based on their overall selectivity;
3 Θ𝐼𝑃𝐶

𝑠1 ← obtain the IPC set of 𝑣𝑠1 ;
4 𝑚𝑖𝑛𝑃𝑎𝑖𝑟𝑠 ← put the parameters 𝑣𝑠𝑖 and Θ𝐼𝑃𝐶

𝑠𝑖 into Algorithm 1 to
obtain the RidTimePair results; ⊲ start the first-phase filtering

5 Map<String, RidTimePair[]> varPairsMap;
6 𝑣𝑎𝑟𝑃𝑎𝑖𝑟𝑠𝑀𝑎𝑝.𝑝𝑢𝑡 (𝑣𝑠𝑖 , 𝑚𝑖𝑛𝑃𝑎𝑖𝑟𝑠 ) ;
7 𝑅𝐼𝑆 ← generate the replay interval set based on𝑚𝑖𝑛𝑃𝑎𝑖𝑟𝑠 ;
8 foreach variable 𝑣𝑖 in {𝑣𝑠2 , ..., 𝑣𝑠𝜉 } do
9 String 𝑡𝑦𝑝𝑒 ← the event type bound to the variable 𝑣𝑖 ;

10 𝑡𝑖𝑚𝑒𝑅𝑎𝑛𝑔𝑒𝑠 ← ST.getAllBlockTimeRange(type, Θ𝐼𝑃𝐶
𝑠𝑖 );

11 bool [] 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑠 ← 𝑅𝐼𝑆.𝑐ℎ𝑒𝑐𝑘𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (𝑡𝑖𝑚𝑒𝑅𝑎𝑛𝑔𝑒𝑠 ) ;
12 int [] 𝑏𝑙𝑜𝑐𝑘𝐼𝐷𝑠 ← ST.getAllBlockIds(type, Θ𝐼𝑃𝐶

𝑠𝑖 , overlaps);
13 𝑐𝑢𝑟𝑃𝑎𝑖𝑟𝑠 ← query the RidTimePair results that satisfy the

type condition and IPCs of variable 𝑣𝑖 from related Index
Blocks and BufferPool; ⊲ same as Line 5-17 in Algorithm 1

14 𝑣𝑎𝑟𝑃𝑎𝑖𝑟𝑠𝑀𝑎𝑝.𝑝𝑢𝑡 (𝑣𝑖 , 𝑐𝑢𝑟𝑃𝑎𝑖𝑟𝑠 ) ;
15 𝐸𝑣𝑒𝑛𝑡 [ ] 𝑒𝑣𝑒𝑛𝑡𝑠 ; ⊲ start the second-phase filtering
16 foreach variable 𝑣𝑘 (𝑣𝑘 ≠ 𝑣𝑠1 ) in query do
17 𝑝𝑎𝑖𝑟𝑠𝑘 = 𝑣𝑎𝑟𝑃𝑎𝑖𝑟𝑠𝑀𝑎𝑝.𝑔𝑒𝑡 (𝑣𝑘 ) ;
18 𝑅𝐼𝑆.𝑐𝑜𝑣𝑒𝑟𝑖𝑛𝑔𝑈𝑝𝑑𝑎𝑡𝑒 (𝑝𝑎𝑖𝑟𝑠𝑘 ) ; ⊲ update replay interval set
19 foreach variable 𝑣𝑘 in {𝑣1, ..., 𝑣𝜉 } do
20 𝑝𝑎𝑖𝑟𝑠𝑘 = 𝑣𝑎𝑟𝑃𝑎𝑖𝑟𝑠𝑀𝑎𝑝.𝑔𝑒𝑡 (𝑣𝑘 ) ;
21 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑘 = 𝑅𝐼𝑆.𝑝𝑎𝑖𝑟𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔 (𝑝𝑎𝑖𝑟𝑠𝑘 ) ; ⊲ remove the

events whose timestamps are not within 𝑅𝐼𝑆
22 𝑣𝑎𝑟𝑃𝑎𝑖𝑟𝑠𝑀𝑎𝑝.𝑢𝑝𝑑𝑎𝑡𝑒 (𝑣𝑘 , 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑃𝑎𝑖𝑟𝑠𝑘 ) ;
23 𝑒𝑣𝑒𝑛𝑡𝑠 ← retrieve events based on all RIDs in varPairsMap;
24 return EvaluationEngine.match(events).

is achieved by coveringUpdate function (Line 18). Next, we re-
move the RidTimePair results whose timestamps are not within
𝑅𝐼𝑆 using pairFiltering function (Line 19-22). Finally, we re-
trieve events from the disk using RIDs (Line 23), merge these events
based on timestamp, put the events into the evaluation engine to
obtain matched tuples, and then return these tuples (Line 24).

TheoRem 1. Algorithm 2 has a linear time and space complexity.

PRoof. (Sketch) Algorithm 2 obtains query results based on in-
dividual variables, and obtaining the query results of each variable
has a linear time and space complexity. Then, Algorithm 2 has a
linear time and space complexity. □

Example. Suppose an Index Block only stores six events. Follow-
ing the first example, when processing the query 𝑄1 on the event
set in Table 1 (note that we extra add five unrelated events 𝑒8-𝑒12 to
this event set), ACER first calculates the overall selectivity of each
variable and identifies that variable v1 has the minimum selectiv-
ity. Then, ACER uses Algorithm 1 to obtain query results {(𝑟𝑖𝑑1, 10:
55), (𝑟𝑖𝑑5, 11:03)} of variable v1. Next, based on Equation 1, ACER
generates the replay interval set 𝑅𝐼𝑆 = {[10 : 55, 11 : 07], [11 : 03, 11 :
15]} as shown in Figure 8. Then, ACER continues to query the re-
sults of other variables. Importantly, before querying an Index Block,
ACER verifies whether the Index Block’s time range overlaps with𝑅𝐼𝑆 .
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Clearly, the second Index Block cannot overlap with 𝑅𝐼𝑆 . Thus, other
variables only access the first Index Block to obtain query results. The
query results of variable v1, v2, v3, and v4 are {𝑒1, 𝑒5}, {𝑒3, 𝑒6}, {𝑒1, 𝑒5},
and {𝑒3, 𝑒6}, respectively. After gathering the query results of all
variables, ACER starts removing replay intervals that do not contain
matched tuples based on Observation 1. In this example, although
each variable has events whose timestamps are within the two replay
intervals, the second replay interval reuses events 𝑒5 and 𝑒6. Then,
the second replay interval can still be removed. Finally, we only need
to query the events whose timestamps are within the first replay in-
terval, i.e., {𝑒1, 𝑒3, 𝑒5, 𝑒6}, and we send these events to the evaluation
engines for matching.

𝒆𝟓 𝒆𝟔

10:55 11:00 11:05

… …
𝒆𝟕

11:07

𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒

11:15 11:23 Time

First replay interval

Second replay interval

…

𝒆𝟏 𝒆𝟓𝒆𝟑 𝒆𝟔 𝒆𝟐 𝒆𝟒

First Index Block Second Index Block   
(Without Accessing)

𝒆𝟕 𝒆𝟏𝟐𝒆𝟖 𝒆𝟗 𝒆𝟏𝟎 𝒆𝟏𝟏

𝒆𝟏𝟐𝒆𝟖 …

(Remove)

Figure 8:Query running example.

3.4 Optimization
In this subsection, we present two optimization techniques, abbre-
viated as O1 and O2, to improve the query performance of ACER
further as follows:

(O1) Index Block compression. ACER places data with the same
category (e.g., timestamps, attribute values, and RIDs) in a contin-
uous area, which enables us to reduce Index Block size through
compression effectively. Although reducing index block size can al-
leviate the I/O access overhead, it incurs additional computational
overhead when decoding. In this paper, delta compression2 is se-
lected to compress the content of Index Blocks as it has a very
low encoding/decoding overhead. Besides, Roaring encoding [33]
is chosen to compress Range Bitmap3.

(O2) Query optimization. The query process in Algorithm 2 ac-
cesses the corresponding Index Block based on individual variables.
Assume that a variable 𝑣𝑖 with minimum overall selectivity needs
to access an Index Block IB, and other variables also need to ac-
cess IB. Then, before accessing the Index Block IB, other variables
must wait until the variable 𝑣𝑖 queries all related Index Blocks. In
the waiting period, the Index Block IB may have been removed
from the cache, leading to ACER repeatedly retrieving the same
Index Blocks from the disk. To avoid repeated retrieval, we allow
other variables to immediately query the Index Block IB once the
variable 𝑣𝑖 completes its query in the Index Block IB. However, this
optimization, O2, may not always improve query performance.The
reason is that if an Index Block does not contain matched tuples,
the two-phase filtering algorithm will remove the Index Block to
prevent other variables from accessing it. At this time, allowing
other variables to access the Index Block immediately incurs ad-
ditional query overhead. Thus, we recommend enabling O2 only
when the selectivity of variable 𝑣𝑖 is greater than 0.01%.

In Section 4.2, we will verify the two optimizations O1 and O2.
2The compressed value is equal to the real value minus the minimum value.
3Note that when each Index Block stores the same number of events, Roaring encod-
ing may cause the size of Range Bitmap in each index block to be different.

4 EXPERIMENTAL EVALUATION
In this section, we first describe our experimental settings. Then,
we evaluate the performance of ACER against prior index-based
and fullscan-basedmethods on three real-world and three synthetic
datasets. The source code is publicly available [2].

4.1 Experimental Settings
Datasets. We use three real-world datasets [6, 32, 43, 54]: Clus-
ter [49], NASDAQ [1], and Crimes [42]. Cluster, NASDAQ, and
Crimes datasets record job lifecycle, stock trading price and vol-
ume, and crime reports, respectively. The space overhead of an
event on Cluster, NASDAQ, Crimes, and Synthetic datasets is 24,
48, 40, and 36 bytes. Table 2 shows the details of each dataset we
use. Particularly, the multiple underlines mark the attributes that
the query involves, which means we need to construct correspond-
ing indexes for these attributes.

Table 2: Real-world dataset details.
Dataset Event number Columns
Cluster 2M type, jobID, schedulingClass, timestamp
NASDAQ 8.7M ticker, open, high, low, close, vol, date
Crimes 7.7M primaryType, ID, beat, district, lat, lon, date

Besides, we generate three synthetic datasets (denoted by SD10M,
SD100M, and SD1G) containing 10M, 100M, and 1G events, respec-
tively. Each synthetic dataset follows the schema: (string type, int
a1, int a2, float a3, float a4, long timestamp), where each float-point
value has at most two decimal places. The event arrival rate is one
event per millisecond, and the event type obeys the Zipf distribu-
tion (skew=1.3, n=50). The value range of each attribute is between
0 and 1000, and they obey uniform distribution.

Baselines.We choose the following baselines: (1) FullScan [55]
scans all events from disk and pre-filters irrelevant events before
sending them to the evaluation engine; (2) NaiveIndex [32] con-
structs the B+Tree indexes for the event type and corresponding
attributes, and queries all type conditions and IPCs through the
indexes to obtain filtered events; and (3) IntervalScan [32] addi-
tionally constructs an index for the timestamp column compared
with NaiveIndex. It combines the window condition and IPCs to
obtain relevant events (the detailed query plan can be seen in Sec-
tion 1). More implementation details can be seen in Appendix C.

Queries.OnCluster dataset, we identify patterns that jobs (with
the same scheduling class) are submitted, scheduled, and evicted/fin-
ished/killed within a short period (10ms-1s) [54]. On the NASDAQ
dataset, we search for price anomalies of two highly correlated
stocks, where the opening price of one stock rises first, and then
the opening price of the other stock falls within 15 minutes. On
Crimes dataset, we search a sequence of ROBBERY, BATTERY and
MOTOR VEHICLE THEFT within 30 minutes, and the places where
these events occurred are relatively near [32, 55]. These criminal
activities are likely to be committed by the same criminal. All real-
world queries choose skip-till-next-match as the selection strategy.

On the three synthetic datasets, we test 5 event patterns listed
in Table 3, where capital letters (A-E) represent an event type 𝑡𝑦𝑝𝑒𝑖 .
The event type of each pattern obeys the Zipf distribution (skew =
1.3) and 𝑡𝑦𝑝𝑒𝑖 ≠ 𝑡𝑦𝑝𝑒 𝑗 when 𝑖 ≠ 𝑗 . Besides, we randomly add 1-
3 IPCs for each variable (the selectivity of each IPC is randomly
set to 0.01-0.2) and randomly add 1-3 DPCs for each query. We
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Table 3:Queried event patterns on synthetic datasets.
P1 SEQ(A a, B b, C c)

P2 SEQ(A a, B b, C c, D d, E e)

P3 SEQ(SEQ(A a, AND(B b, C c)), D d)

P4 SEQ(A a, AND(B b , C c), D d)

P5 SEQ(AND(A a, B b), AND(C c, D d))

set the query time window to 1000ms. For patterns P1 and P2, we
randomly choose skip-till-next-match or skip-till-any-match as the
selection strategy. However, for patterns P3, P4, and P5, we set the
selection strategy to skip-till-next-match to reduce the number of
matched tuples and avoid exceeding memory space.

4.2 Results for Real-world Datasets
Speedup performance comparison.Wefirst generate 500 queries
for each real-world dataset. Then, we evaluate their query latency
under differentmethods, calculate the speedup of index-basedmeth-
ods compared with FullScan, and show the results in Figure 9.
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Figure 9: Speedup of index-based methods when using NFA
or Join Tree as evaluation engines on real-world datasets.

Regardless of the evaluation engines chosen, ACER consistently
outperforms FullScan across the three real-world datasets, with
median speedup ranging from 6.5× to 70×. Notably, ACER’s query
speedup exhibits significant fluctuations on Cluster and NASDAQ
datasets due to heavy changes in variables’ overall selectivity or
the query window. In contrast, ACER shows stable query speedup
on Crimes dataset, where the query window remains fixed, and the
overall selectivity of each variable remains stable. Compared with
FullScan, IntervalScan can reduce query latency on Cluster and
NASDAQ datasets because the queries have a low predicate selec-
tivity and a short query window. Once the query has high predi-
cate selectivity or a long querywindow (e.g., on Crimes dataset), In-
tervalScan struggles to accelerate CER. NaiveIndex needs to query
all IPCs and type conditions using B+Tree, which incurs significant
filtering overhead, leading to its inability to accelerate CER.

Insertion latency comparison. We evaluate the average in-
sertion latency of differentmethods on the three real-world datasets
and show the results in Figure 10. Compared with FullScan, ACER
increases the insertion latency by 47.5%, 103.7%, and 121.5% on
Cluster, NASDAQ, and Crimes datasets (because the number of
attributes need to be indexed increases), respectively. IntervalScan
increases the insertion latency by 15.8×, 47.2×, and 63.6× on the
same datasets. NaiveIndex has lower insertion latency than Inter-
valScan because NaiveIndex does not construct a B+Tree index on
the timestamp column. IntervlScan and NaiveIndex have a high in-
sertion latency because they need to insert attribute values into
multiple tree-like indexes, and insertion operation may cause fre-
quent node splitting, slowing insertion performance.
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Figure 10: Insertion latency
on the real-world datasets.
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Figure 11: Storage overhead
on the real-world datasets.

Storage overhead comparison. We report the total disk stor-
age overhead of ACER and baselinemethods.The results are shown
in Figure 11. Compared with FullScan, ACER only increases stor-
age space by around 35%, 28%, and 57% on the three real-world
datasets, while IntervalScan increases it by around 5.8×, 3.8×, and
6.7× on the same datasets. ACER has the lowest storage overhead
for two reasons. Firstly, ACER only stores the type information
once per cluster. Secondly, Range Bitmap indexes, the timestamp
list, and the RID list in each Index Block store delta values rather
than real values (see Section 3.4), thus reducing the size of ACER.
In contrast, IntervalScan needs to construct additional indexes for
the timestamp and type columns compared with ACER. Even if
NaiveIndex does not construct an index for the timestamp column,
it still has an expensive storage overhead. The reason is that the
tree-like indexes have numerous non-full nodes, and they repeat-
edly store the RID and timestamp of the event in the tree-like in-
dexes, causing severe storage redundancy.

Query latency comparison with real systems.OnNASDAQ
dataset, we evaluate the query latency of three queries (𝑄1,𝑄2, and
𝑄3) in Flink (we set the parallelism to 1) and a commercial data-
base (CDB for short). In addition, we employ ACER and Apache
Pinot [40] (the inverted index and Range Bitmap indexes have been
constructed for the type and query attribute columns) as index-
filtering plugins in Flink to pre-filter events. Each query is tested
10 times across these systems, and their latency results are shown
in Figure 12. Here, Filnk w. ACER denotes Flink using ACER for
pre-filtering, while Filnk w. Pinot denotes Flink using Pinot for pre-
filtering. ACERfilters outmore than 99% of events for these queries,
reducing the query latency of Flink by 10×. In contrast, Pinot only
filters out around 90% of events for these queries, reducing the
query latency of Flink by 3× to 5×. This discrepancy arises because
Pinot solely leverages type conditions for filtering (see Appendix
B for details). Notably, the query latency in CDB is always over
half an hour because it has a more complex selection strategy than
skip-till-next-match (the relevant SQL query statement can be seen
in Appendix B), which leads to high matching cost for CDB. Even
if we rewrite the query based on [55] to obtain an improved execu-
tion plan, CDB still cannot return query results within 20 minutes.
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Ablation studies.To validate the effectiveness of optimizations
O1, O2, and the two-phase filtering, we conduct ablation studies on
the three real-world datasets4. Specifically, ACER-C denotes the
disabling of optimization O1, ACER-Q denotes the disabling of op-
timization O2, and ACER-F denotes replacing the two-phase filter-
ing algorithm with a bucketized filtering algorithm [55]. Then, we
measure the average query latency of 500 queries on each dataset
and show the results in Figure 13. Clearly, (1) without O1, the
average latency on the three real-world datasets will increase by
around 10% due to higher I/O access overhead in indexes; (2) with-
out O2, the average latency on the three real-world datasets will
increase by 13%, 29%, and 113%. The reason is that obtaining query
results based on individual variables leads to repeated retrieval of
Index Blocks; and (3) without the two-phase filtering, the query la-
tency on the three real-world datasets will increase by 1.2×, 4.8×,
and 1.8×. This is because the bucketized filtering algorithm cannot
avoid unnecessary disk access in indexes and events.

4.3 Results for Synthetic Datasets
To further evaluate the scalability of ACER, we generate three syn-
thetic datasets with more events. We generate 100 queries for each
query pattern and calculate the query speedup of the index-based
methods compared with FullScan on the three synthetic datasets.
The results are shown in Figure 14.
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Figure 14: Speedup of index-based methods compared with
FullScan on the three synthetic datasets for the five patterns.

Comparedwith FullScan, ACER achieves amedian speedup rang-
ing from 2× to 10× across the three synthetic datasets. Among the
index-based methods, ACER shows the best speedup performance.
Notably, the 0-th percentile of ACER is lower for patterns P1 and
P2 because half of the queries on P1 and P2 contain skip-till-any-
match selection strategies, resulting in numerous partial matches.
Numerous partial matches lead to high matching overhead and
high copying overhead. Thus, when the selection strategy is set
to skip-till-any-match, the matching cost accounts for a more sig-
nificant proportion of the overall query cost, resulting in a low
speedup performance of ACER. Neither IntervalScan nor NaiveIn-
dex can improve query performance.The reason is that NaiveIndex
filters out irrelevant events by querying all IPCs and type condi-
tions using tree-like indexes, which have an expensive index query
overhead. Although IntervalScan only queries partial conditions,
the access overhead of tree-like indexes is still high when process-
ing predicates with high selectivity. Besides, as the dataset size in-
creases, the performance of NaiveIndex and IntervalScan deterio-
rates due to the increased cost of sorting operations.

4Unless otherwise stated, NFA will be selected as the default evaluation engine in the
following experiments.

5 RELATEDWORKS
Complex event recognition (CER) in event stores. CER aims to
identify specific patterns from historical data. Typically, event stores
collect events from different sources and respond to queries by re-
trieving relevant patterns from the stored events. This process is
described as human-active database-passive [13]. Some implemen-
tations of event stores include SASE [23], SASE+ [16], and CORE
[7]. Yet, these systems often suffer from high query latency due
to costly disk I/O overhead and the filtering of the evaluation en-
gine. To reduce high query latency, (1) Zhu et al. [55] introduced
a bucketized pre-filtering approach that effectively reduces match-
ing costs, but it cannot alleviate the costly I/O overhead; (2) Korber
et al. [32] proposed an index filtering approach that reduce I/O ac-
cess in events. However, this method incurs extra and expensive
index accessing and sorting overhead. As a result, it still struggles
with high latency, particularly for queries with high predicate se-
lectivity or long query windows. In contrast, our proposed ACER
structure efficiently alleviates costly disk I/O overhead and auto-
matically produces ordered results without sorting, thus reducing
the overall query latency.
Complex event processing (CEP) in data-streamsystems.CEP
focuses on real-time monitoring and processing of predefined pat-
terns from streaming data. Concretely, the user first specifies the
predetermined detection patterns to data-stream systems, and then
the systems consume events to generate matched tuples and trig-
ger planned actions. Thus, the interaction in CEP is described as
human-passive database-active [13]. A practical data-stream sys-
tem for CEP is Flink [19]. Commonly, the data-stream systems
use NFA as the evaluation engine. However, NFA often encoun-
ters low processing throughput. To address this issue, various tech-
niques have been proposed, including parallel-based techniques
[31, 51, 53], join-based techniques [29, 30, 36], sub-pattern shar-
ing techniques [11, 35, 41, 44], and filter-based techniques [6] (a
comprehensive survey can be found in [20]). Notably, CEP runs in
an online scenario where every incoming event is examined and
stored in main memory [32]. In contrast, we aim to reduce the I/O
overhead when loading the events to the main memory. Thus, the
optimization techniques in CEP are orthogonal to our solution.

6 CONCLUSION
This paper proposes ACER, a Range Bitmap-based index for accel-
erating CER.Themain ideas of ACER are reducing the size of the in-
dex block to alleviate the I/O access overhead in indexes, construct-
ing Range Bitmaps for query attributes to produce ordered results
without sorting, and utilizing a two-phase filtering algorithm to
avoid unnecessary disk access. The experimental results show that
ACER reduces the query latency by up to one order of magnitude
on six real-world and synthetic datasets over SOTA techniques.
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TECHNICAL APPENDIX

A MATCHING PROCESS OF JOIN TREE
Example. Figure 15 shows the built Join Tree for query𝑄1. This tree
has four leaf nodes and three internal nodes. Each leaf node in the
query tree is associated with a variable, a matching buffer, a type
condition, and the IPCs, while each internal node is associated with a
temporal operator, a matching buffer, and join conditions. Leaf nodes’
matching buffers store primitive events, while internal nodes’ match-
ing buffers store partial matches. Note that the root node’s matching
buffer stores the matched tuples.

When receiving the events in Table 1, each leaf node checks if an
event satisfies the type condition and IPCs bound to this node. If yes,
the event is stored in the corresponding leaf node’s matching buffer.
In this example, node ¬ has the conditions v1.ticker='MSFT' and
326<=v1.open<=334. As a result, the matching buffer of node ¬

stores the primitive event sets {𝑒1, 𝑒5}. Similarly, thematching buffers
of leaf nodes , ®, and ¯ stores the events sets {𝑒3, 𝑒6, 𝑒7}, {𝑒1, 𝑒5},
and {𝑒3, 𝑒6, 𝑒7}, respectively. Once a leaf node buffers a new event,
it triggers the join operation of its father node. The join operation
combines the child nodes’ matching buffers to generate new matches
based on temporal operator semantics, querywindow condition, DPCs,
and selection strategy. The join conditions of node ° are v1.date<=
v2.date, v2.date-v1.date<=12 minutes, and skip-till-next-match
strategy. Thus, its join results are {(𝑒1, 𝑒3), (𝑒5, 𝑒6)} (note that the re-
sult (𝑒1, 𝑒6) is removed by skip-till-next-match strategy). Similarly,
the join results of root node ² are {(𝑒1, 𝑒3, 𝑒5, 𝑒6)}, representing final
matched tuples.
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Figure 15: Join Tree for query 𝑄1.

B EXAMPLE QUERIES ON NASDAQ
Listing 2 and Listing 3 show two complex event queries𝑄2 and𝑄3
used in our experimental evaluation.

1 PATTERN SEQ(NVDA v1, INTC v2, NVDA v3, INTC v4)
2 FROM NASDAQ
3 USE skip -till -next -match
4 WHERE 403<=v1.open <=423 AND 23<=v2.open <=43
5 AND v3.open >=v1.open *1.007
6 AND v4.open <=v2.open *0.993
7 WITHIN 15 minutes
8 RETURN COUNT (*)

Listing 2:Query statement 𝑄2.

1 PATTERN SEQ(AMZN v1, BABA v2, AMZN v3, BABA v4)
2 FROM NASDAQ
3 USE skip -till -next -match
4 WHERE 100<=v1.open <=120 AND 90<=v2.open <=110
5 AND v3.open >=v1.open *1.007
6 AND v4.open <=v2.open *0.993
7 WITHIN 15 minutes
8 RETURN COUNT (*)

Listing 3:Query statement 𝑄3.

Listing 4 shows a SQL statement 𝑄4 corresponding to the com-
plex event query 𝑄1 (note that the two queries are not equivalent
due to inconsistent selection strategies). Since the type conditions
of variables v1 and v3 are the same, 𝑄4 needs to union their pred-
icate conditions to retrieve related events, which leads to it only
filtering the events based on type conditions. In contrast, the query
process in ACER is based on individual variables, and it utilizes the
window condition and IPCs to filter events, which can avoid un-
necessary disk access and achieve a better filtering performance.
Thus, even though advanced database systems, such as Apache
Pinot [40] and ClickHouse [12], have implemented Range Bitmap
indexes to handle range queries, their filtering performance is poor
when processing complex event queries due to the lack of window-
aware filtering.

1 WITH events AS(
2 SELECT ticker ,open ,ts FROM NASDAQ
3 WHERE ticker='MSFT' OR ticker='GOOG'
4 ORDER BY ts
5 )SELECT COUNT (*) FROM events MATCH_RECOGNIZE(
6 MEASURES V1.ts AS D1,V2.ts AS D2,V3.ts AS D2,V4.

ts AS D4
7 ONE ROW PER MATCH
8 AFTER MATCH SKIP TO NEXT ROW
9 PATTERN (V1 Z* V2 Z* V3 Z* V4)
10 DEFINE
11 V1 AS V1.ticker='MSFT'
12 AND V1.open BETWEEN 326 AND 334,
13 V2 AS V2.ticker='GOOG'
14 AND V2.open BETWEEN 120 AND 130
15 AND V2.ts-V1.ts <= INTERVAL '12' MINUTE ,
16 V3 AS V3.ticker='MSFT'
17 AND V3.open >=V1.open * 1.003
18 AND V3.ts-V1.ts <= INTERVAL '12' MINUTE ,
19 V4 AS V4.ticker='GOOG'
20 AND V4.open <=V2.open * 0.997
21 AND V4.ts-V1.ts <= INTERVAL '12' MINUTE);

Listing 4: SQL statement 𝑄4.

C IMPLEMENTATION DETAILS
Environment. We conduct all experiments on a Windows 11 PC
with Intel(R) Core(TM) i9-10900K CPU@ 3.70GHz and 32GBmem-
ory at 3200-MHz.We implement all methods in Java and set the Xmx
parameter in JVM to 4GB (Xmx specifies the maximum memory al-
location pool for a JVM).
Implementation.We use the open-source B+Tree [37] and Roar-
ing Bitmap [17] codes as the tree-like index and bitmapmodule and
adopt their default parameter settings. Note that, for IntervalScan
method, we use B+Tree rather than LSM-Tree [39] to index the
timestamp column because B+Tree has better query performance.
The disk page size in all methods is set to 8KB, and the Buffer Pool
capacity of ACER is set to 42K.
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